• Title/Summary/Keyword: Line Power Sensitivity

Search Result 134, Processing Time 0.025 seconds

Identification of Correlative Transmission Lines for Stability Prediction

  • Cho, Yoon-Sung;Gilsoo Jang;Kwon, Sae-Hyuk;Yanchun Wang
    • KIEE International Transactions on Power Engineering
    • /
    • v.11A no.4
    • /
    • pp.15-20
    • /
    • 2001
  • Power system stability is correlated with system structure, disturbances and operating conditions, and power flows on transmission lines are closely related with those conditions. This paper proposes a methodology to identify correlative power flows for power system transient and small-signal stability prediction. In transient stability sense, the Critical Clearing Time is used to select some dominant contingencies, and Transient Stability Prediction index is proposed for the quantitative comparison. For small-signal stability discusses a methodology to identify crucial transmission lines for stability prediction by introducing a sensitivity factor based on eigenvalue sensitivity technique. On-line monitoring of the selected lines enables to predict system stability in real-time. Also, a procedure to make a priority list of monitored transmission lines is proposed. The procedure is applied to a test system, and it shows capabilities of the proposed method.

  • PDF

Identification of Correlative Transmission Lines for Stability Diagnosis of Power System (전력계통의 안정도 진단이 가능한 선로 선정에 관한 연구)

  • 조윤성;장길수;권세혁
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.5
    • /
    • pp.271-278
    • /
    • 2003
  • Power system stability is correlated with system structure, disturbances and operating conditions, and power flows on transmission lines are closely related with those conditions. This paper proposes a methodology to identify correlative power flows for power system transient and small-signal stability prediction. In transient stability sense, the Critical Clearing Time is used to select some dominant contingencies, and Transient Stability Prediction index is proposed for the quantitative comparison. For small-signal stability, this paper discusses a methodology to identify crucial transmission lines for stability Prediction by introducing a sensitivity factor based on eigenvalue sensitivity technique. On-line monitoring of the selected lines enables to predict system stability in real-time. Also, a Procedure to make a priority list of monitored transmission lines is proposed. The procedure is applied to a test system and the KEPCO systems in the year of 2003 and it shows capabilities of the proposed method

The Optimal Operating Points of Multiple UPFCs for Enhancing Power System Security Level (전력시스템 안전도 향상을 위한 다기 UPFC의 최적 운전점 결정)

  • 임정욱;문승일
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.8
    • /
    • pp.388-394
    • /
    • 2001
  • This paper presents how to determine the optimal operating points of Unified Power Flow controllers (UPFC) the line flow control of which can enhance system security level. In order to analyze the effect of these devices on the power system, the decoupled model has been employed as a mathematical model of UPFC for power flow analysis. The security index that indicates the level of congestion of transmission line has been proposed and minimized by iterative method. The sensitivity of objective function for control variables of and UPFC has been derived, and it represents the change in the security index for a given set of changes in real power outputs of UPFC. The proposed algorithm with sensitivity analysis gives the optimal set of operating points of multiple UPECs that reduces the index or increases the security margin and Marquart method has been adopted as an optimization method because of stable convergence. The algorithm is verified by the 10-unit 39-bus New England system that includes multiple FACTS devices. The simulation results show that the power flow congestion can be relieved in normal state and the security margin can be guaranteed even in a fault condition by the cooperative operation of multiple UPECs.

  • PDF

Fuzzy PSO Congestion Management using Sensitivity-Based Optimal Active Power Rescheduling of Generators

  • Venkaiah, Ch;Vinod Kumar, D M
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.32-41
    • /
    • 2011
  • This paper presents a new method of Fuzzy Particle Swarm Optimization (FPSO)-based Congestion Management (CM) by optimal rescheduling of active powers of generators. In the proposed method, generators are selected based on their sensitivity to the congested line for efficient utilization. The task of optimally rescheduling the active powers of the participating generators to reduce congestion in the transmission line is attempted by FPSO, Fitness Distance Ratio PSO (FDR-PSO), and conventional PSO. The FPSO and FDR-PSO algorithms are tested on the IEEE 30-bus and Practical Indian 75-bus systems, after which the results are compared with conventional PSO to determine the effectiveness of CM. Compared with FDR-PSO and PSO, FPSO can better perform the optimal rescheduling of generators to relieve congestion in the transmission line.

A Study on an Algorithm Based on Sensitivity Method for Alleviating Overloads in Power Networks (송전선로 과부하를 해소하기 위한 민감도에 근거한 알고리즘 연구)

  • Lee, Byung-Ha;Baek, Jung-Myoung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.8
    • /
    • pp.96-103
    • /
    • 2008
  • In this paper, a new algorithm based on sensitivity method for alleviating overloads in power networks is presented to find the switching branches effectively. By applying the new sensitivity of the line flow with respect to the change of the branch impedance, both on and off switchings for alleviating overloads in power networks are performed systematically at once and an effective scheme for drawing up a plan to alleviate overloads of the lines is presented through screening a large number of line switching cases easily. The ranking of switching branches is calculated according to the new switching algorithm based on sensitivity method and the switching of the ranked branches is performed in the order of ranking until overloads are eliminated. In order to show the effects of this algorithm, it is applied to a small scale power system of IEEE 39-bus test system.

A Development of On-Line Guidance System for Power System (전력 계통 이상 상태 Guidance System 개발)

  • Oh, Seung-Ryle;Baek, Young-Sik;Kim, Jung-Nyun;Han, Moo-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.47-49
    • /
    • 2002
  • Recently, the power system has a trend of a sustaining growth in electric power demand with large-sized formation. In this situation, current states can be definitely comprehended to operate security and economic power system. Also, corrective actions must be performed for the violation of bus voltage and line overload. In the security and economy with on-line, It is desirable that the situations of violation are promptly removed to operate power system effectively. This paper deals with the development of application, Kangyang Steel Works' Power System Guidance System, for voltage and overload correction on base case using Generator-Voltage Sensitivity List(GVSL) and Generator Shifter Factor List(GSFL). Also, to show the superiority and economical efficiency of the proposed application, we simulate the Kangyang Steel Works' Power System.

  • PDF

PRINCIPAL COMPONENTS BASED SUPPORT VECTOR REGRESSION MODEL FOR ON-LINE INSTRUMENT CALIBRATION MONITORING IN NPPS

  • Seo, In-Yong;Ha, Bok-Nam;Lee, Sung-Woo;Shin, Chang-Hoon;Kim, Seong-Jun
    • Nuclear Engineering and Technology
    • /
    • v.42 no.2
    • /
    • pp.219-230
    • /
    • 2010
  • In nuclear power plants (NPPs), periodic sensor calibrations are required to assure that sensors are operating correctly. By checking the sensor's operating status at every fuel outage, faulty sensors may remain undetected for periods of up to 24 months. Moreover, typically, only a few faulty sensors are found to be calibrated. For the safe operation of NPP and the reduction of unnecessary calibration, on-line instrument calibration monitoring is needed. In this study, principal component-based auto-associative support vector regression (PCSVR) using response surface methodology (RSM) is proposed for the sensor signal validation of NPPs. This paper describes the design of a PCSVR-based sensor validation system for a power generation system. RSM is employed to determine the optimal values of SVR hyperparameters and is compared to the genetic algorithm (GA). The proposed PCSVR model is confirmed with the actual plant data of Kori Nuclear Power Plant Unit 3 and is compared with the Auto-Associative support vector regression (AASVR) and the auto-associative neural network (AANN) model. The auto-sensitivity of AASVR is improved by around six times by using a PCA, resulting in good detection of sensor drift. Compared to AANN, accuracy and cross-sensitivity are better while the auto-sensitivity is almost the same. Meanwhile, the proposed RSM for the optimization of the PCSVR algorithm performs even better in terms of accuracy, auto-sensitivity, and averaged maximum error, except in averaged RMS error, and this method is much more time efficient compared to the conventional GA method.

Installation of MFC(Multiple FACTS Coordinated control) On-line System for the Spinning Reserve of a Reactive Power in Metropolitan Area (수도권 순동 무효전력 확보를 위한 FACTS 협조제어 시스템 온라인 설치)

  • Chang, Byung-Hoon;Moon, Seung-Pil;Ha, Yong-Gu;Jeon, Woong-Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2131-2134
    • /
    • 2010
  • In this paper, the on-line system schemes for coordinated control system of multiple FACTS were presented to enhance the voltage stability around the metropolitan areas. In order to coordinated control system of FACTS devices, MFC on-line system calculates the optimal set point(Vref, Qrev) of FACTS devices using the coordinated control algorithm with real time network data which is transferred from SCADA/EMS system. If the system is unstable after contingencies, the new operation set-point of FACTS would be determined using bus sensitivity from tangent vector at voltage instability point. Otherwise, we would determine the new operation set-point of FACTS for considering economical operation, like as active power loss minimization using Optimal Power Flow algorithm. As the test, MFC(Multiple FACTS Coordinated control) on-line system will be installed in Korea power system.

Direct Load Control Scheme for Congestion Problems in Power System Emergency (비상시 선로혼잡 해결을 위한 직접부하제어)

  • Shin, Ho-Sung;Kim, Byoung-Su;Song, Kyung-Bin;Kim, Jae-Chul;Lee, Hak-Ju;Kwon, Seong-Chul
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.307-310
    • /
    • 2005
  • Most of the electric power in the power system of South Korea is flowing from the south area to the north area, Seoul, in the capital of South Korea. Almost of the needs of the electric power in the capital area are about 43% of the total loads and generation plants are mainly located in the south area of South Korea. As mentioned the earlier characteristic, transmission congestion is one of the important research issues. Because of the limits of the power flows from the south to the north which are anticipated to be increased more and more in the future, these congestion situations may cause a serious voltage stability problem in emergency of the power system. Accordingly, we are interested in an interruptible load control program so as to solve this problem in emergency. This problem can be solved by an interruptible load management in emergency, however, the systematic and effective mechanism has not been presented yet. In this paper, the algorithm of interruptible load management plan using the line sensitivity to the loads for the transmission congestion management in emergency is presented. The proposed method is applied to 6-Bus sample system and their results are presented.

  • PDF

The On-Line Application Algorithm of SCOPE Using Time-varying Sensitivities (시변민감도를 이용한 안전도제약 최적조류계산의 On-Line 적용 알고리즘)

  • 김발호;신영균
    • Journal of Energy Engineering
    • /
    • v.13 no.1
    • /
    • pp.60-67
    • /
    • 2004
  • The recent movement to deregulated and competitive electricity market reacquires new concepts against existing central dispatch in the system operation and pinning. As power systems tend to be operated more closely to their ultimate ratings, the role of SCOPF (Security Constrained Optimal Power flow) is changed and the importance for real-time security inhancement will be more increased i]1 the new and com partitive electricity market. This paper deals with the application of the SCOPF which makes possible the On-Line application. The security margin of power system truly is changed according to the conditions or configuration of power systems, therefore, the sensitivity factor reiated to the security is recalculated and the application should be updated in accordance with the state of power system. The goal of this paper is to obtain proper security through the effluent usage of the sensitivity and to apply this a1gorithm to system operation. The proposed mechanism has been tested on a sample system and the results show more secure conditions against critical contingencies.