• Title/Summary/Keyword: Line Marker

Search Result 299, Processing Time 0.031 seconds

Pyramiding transgenes for potato tuber moth resistance in potato

  • Meiyalaghan, Sathiyamoorthy;Pringle, Julie M.;Barrell, Philippa J.;Jacobs, Jeanne M.E.;Conner, Anthony J.
    • Plant Biotechnology Reports
    • /
    • v.4 no.4
    • /
    • pp.293-301
    • /
    • 2010
  • The feasibility of two strategies for transgene pyramiding using Agrobacterium-mediated transformation was investigated to develop a transgenic potato (Solanum tuberosum L. cv. Iwa) with resistance to potato tuber moth (PTM) (Phthorimaea operculella (Zeller)). In the first approach, cry1Ac9 and cry9Aa2 genes were introduced simultaneously using a kanamycin (nptII) selectable marker gene. The second approach involved the sequential introduction (re-transformation) of a cry1Ac9 gene, using a hygromycin resistance (hpt) selectable marker gene, into an existing line transgenic for a cry9Aa2 gene and a kanamycin resistance (nptII) selectable marker gene. Multiplex polymerase chain reaction (PCR) confirmed the presence of the specific selectable marker gene and both cry genes in all regenerated lines. The relative steady-state level of the cry gene transcripts in leaves was quantified in all regenerated lines by real-time PCR analysis. Re-transformation proved to be a flexible approach to effectively pyramid genes for PTM resistance in potato, since it allowed the second gene to be added to a line that was previously identified as having a high level of resistance. Larval growth of PTM was significantly inhibited on excised greenhouse-grown leaves in all transgenic lines, although no lines expressing both cry genes exhibited any greater resistance to PTM larvae over that previously observed for the individual genes. It is anticipated that these lines will permit more durable resistance by delaying the opportunities for PTM adaptation to the individual cry genes.

The Construction of a Chinese Cabbage Marker-assisted Backcrossing System Using High-throughput Genotyping Technology

  • Kim, Jinhee;Kim, Do-Sun;Lee, Eun Su;Ahn, Yul-Kyun;Chae, Won Byoung;Lee, Soo-Seong
    • Horticultural Science & Technology
    • /
    • v.35 no.2
    • /
    • pp.232-242
    • /
    • 2017
  • The goal of marker-assisted backcrossing (MAB) is to significantly reduce the number of breeding generations required by using genome-based molecular markers to select for a particular trait; however, MAB systems have only been developed for a few vegetable crops to date. Among the types of molecular markers, SNPs (single-nucleotide polymorphisms) are primarily used in the analysis of genetic diversity due to their abundance throughout most genomes. To develop a MAB system in Chinese cabbage, a high-throughput (HT) marker system was used, based on a previously developed set of 468 SNP probes (BraMAB1, Brassica Marker Assisted Backcrossing SNP 1). We selected a broad-spectrum TuMV (Turnip mosaic virus) resistance (trs) Chinese cabbage line (SB22) as a donor plant, constructing a $BC_1F_1$ population by crossing it with the TuMV-susceptible 12mo-682-1 elite line. Foreground selection was performed using the previously developed trsSCAR marker. Background selection was performed using 119 SNP markers that showed clear polymorphism between donor and recipient plants. The background genome recovery rate (% recurrent parent genome recovery; RPG) was good, with three of 75 $BC_1F_1$ plants showing a high RPG rate of over 80%. The background genotyping result and the phenotypic similarity between the recurrent parent and $BC_1F_1$ showed a correlation. The plant with the highest RPG recovery rate was backcrossed to construct the $BC_2F_1$ population. Foreground selection and background selection were performed using 169 $BC_2F_1$ plants. This study shows that, using MAB, we can recover over 90% of the background genome in only two generations, highlighting the MAB system using HT markers as a highly efficient Brassica rapa backcross breeding system. This is the first report of the application of a SNP marker set to the background selection of Chinese cabbage using HT SNP genotyping technology.

Inter Simple Sequence Repeat (ISSR) Polymorphism and Its Application in Mulberry Genome Analysis

  • Vijayan Kunjupillai
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.10 no.2
    • /
    • pp.79-86
    • /
    • 2005
  • Molecular markers have increasingly been used in plant genetic analysis, due to their obvious advantages over conventional phenotypic markers, as they are highly polymorphic, more in number, stable across different developmental stages, neutral to selection and least influenced by environmental factors. Among the PCR based marker techniques, ISSR is one of the simplest and widely used techniques, which involves amplification of DNA segment present at an amplifiable distance in between two identical microsatellite repeat regions oriented in opposite direction. Though ISSR markers are dominant like RAPD, they are more stable and reproducible. Because of these properties ISSR markers have recently been found using extensively for finger printing, pohylogenetic analysis, population structure analysis, varietal/line identification, genetic mapping, marker-assisted selection, etc. In mulberry (Morus spp.), ISSR markers were used for analyzing phylogenetic relationship among cultivated varieties, between tropical and temperate mulberry, for solving the vexed problem of identifying taxonomic positions of genotypes, for identifying markers associated with leaf yield attributing characters. As ISSR markers are one of the cheapest and easiest marker systems with high efficiency in generating polymorphism among closely related varieties, they would play a major role in mulberry genome analysis in the future.

CBCT analysis of three implant cases for treatment planning (임플란트 치료 전 CBCT 영상분석 세 증례)

  • Kim, Jae-Duk;Kim, Kwang-Won;Lim, Sung-Hoon
    • Imaging Science in Dentistry
    • /
    • v.37 no.3
    • /
    • pp.171-180
    • /
    • 2007
  • The role of radiographic imaging in determining the size, numbers and the position of implants is very important. To perform the implant procedure, the dentist needs to evaluate the bone pathology and bone density, and to know the precise height, width, and contour of the alveolar process, as well as its relationship to the maxillary sinus and mandibular canal. The author analyzed 3 implant cases for treatment planning with the cone beam CT. All axial, panoramic, serial and buccolingual-sectioned images of 3 cases with stent including vertical marker were taken by using Mercuray (Hitachi, Japan). When the curved line drawn intentionally did not include dot image of a vertical marker on the axial image of CBCT, the image of the vertical marker was deformed on its buccolingually sectioned image. There was wide discrepancy in inclination between the alveolar bone and tooth on buccolingually sectioned image.

  • PDF

Molecular Mapping of Resistant Genes to Brown Planthopper, Bphl and bph2, in Rice

  • Cha, Young-Soon;Cho, Yong-Gu;Shin, Kyeong-Og;Yeo, Un-Sang;Choi, Jae-Eul;Eun, Moo-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.4
    • /
    • pp.345-349
    • /
    • 1999
  • This study was carried out to map Bphl and bph2 gene in Mudgo and Sangju13 (Oryza sativa L.) respectively conferring resistance to brown plan-thopper (BPH) and to establish the marker-assisted selection (MAS) system. Bulked seedling (grown for 20 days) test was conducted with the 73 F4 lines derived from a cross between Nagdongbyeo and Mudgo for Bphl and with 53 BC3F5 lines derived from the Milyang95/Sangju13 cross for bph2. Bph1 was mapped between RG413 and RG901 on chromo-some 12 at a distance of 7.5 cM from RG413 and 8.4 cM from RG90l. A recessive gene bph2 was located near RZ76 on chromosome 12 at a distance of 14.4 cM. Bphl and bph2 were linked to each other with a distance of about 30 cM. An RFLP marker, RG413 linked to Bphl, was converted to an STS marker to facilitate the marker-assisted selection. BPH resistant genotypes could be selected with 92% accuracy in a population derived from a line of NM47-B-B.

  • PDF

Development of a CMS-specific marker based on chloroplast-derived mitochondrial sequence in pepper

  • Jo, Yeong Deuk;Jeong, Hee-Jin;Kang, Byoung-Cheorl
    • Plant Biotechnology Reports
    • /
    • v.3 no.4
    • /
    • pp.309-315
    • /
    • 2009
  • Molecular markers developed from the flanking sequences of two cytoplasmic male sterility (CMS)-associated genes, orf456 and ${\Psi}atp6-2$, have been used for marker-assisted selection of CMS in pepper. However, in practice, the presence of orf456 and ${\Psi}atp6-2$ at substoichiometric levels even in maintainer lines hampers reliable selection of plants containing the CMS gene. In this study, we developed a novel CMS-specific molecular marker, accD-U, for reliable determination of CMS lines in pepper, and used the newly and previously developed markers to determine the cytoplasm types of pepper breeding lines and germplasms. This marker was developed from a deletion in a chloroplast-derived sequence in the mitochondrial genome of a CMS pepper line. CMS pepper lines could be unambiguously determined by presence or absence of the accD-U marker band. Application of orf456, ${\Psi}atp6-2$and accD-U to various pepper breeding lines and germplasms revealed that accD-U is the most reliable CMS selection marker. A wide distribution of orf456, but not ${\Psi}atp6-2$, in germplasms suggests that the pepper cytoplasm containing both orf456 and ${\Psi}atp6-2$ has been selected as CMS cytoplasm from cytoplasm containing only orf456. Furthermore, factors other than orf456 may be required for the regulation of male sterility in pepper.

Development of molecular marker to select resistant lines and to differentiate the races related to powdery mildew in melon (Cucumis melo L.) (멜론 흰가루병의 race 분화 및 저항성 계통 선발을 위한 분자마커 개발)

  • Kim, Hoy-taek;Park, Jong-in;Ishikawa, Tomoko;Kuzuya, Maki;Horii, Manabu;Yashiro, Katsutoshi;Nou, Ill-sup
    • Journal of Plant Biotechnology
    • /
    • v.42 no.4
    • /
    • pp.284-289
    • /
    • 2015
  • Powdery mildew (Podosphaera xanthii) commonly occurs in cultivated fields of melon (Cucumis melo L.). It inflicts a lot of damages. Therefore, breeding resistant lines is essential. Development of a resistant line by integrating resistance gene takes a long time. In addition, break down of developed resistance by generating new virulent fungus strains increases disease susceptibility. This phenomenon was related to races of powdery mildew. Therefore, it is important to develop a DNA marker to genetically analyze race-specific resistance genes of melon powdery mildew to breed resistant lines. To date, a total of 28 races of Podosphaera xanthii have been reported in the literature. In Japan, 10 races have been reported in the Ibaraki region. We developed a system to characterize the races of Podosphaera xanthii and confirmed eight out of those 10 races in the Ibaraki region. In Korea, only one race has been characterized to date. However, some different races were detected. Through genetic analysis of resistant lines and susceptible lines of powdery mildew, resistance genes of race1 (Pm-X, PXB, and Pm-R 1), race N1 (PXA), race 2 (Pm-w and Pm-R 2), race 3 (Pm-X3), and race 5 (Pm-X5 and Pm-R5) were identified in melon. These related genes of race 1, 3, N1, 5, and race 1, 2, 5 were located at linkage group II and V, respectively. In race 1, resistance gene was located in the linkage group XII. In addition, each race-specific marker related to specific resistance gene was developed. Using race information and race selection system obtained in this study, resistant line can be bred to develop resistant cultivar for several areas. Furthermore, this will make it more easily and economically to breed resistant lines by using selected markers.

Marker-assisted Genotype Analysis of Bulb Colors in Segregating Populations of Onions (Allium cepa)

  • Kim, Sunggil;Bang, Haejeen;Yoo, Kil-Sun;Pike, Leonard M.
    • Molecules and Cells
    • /
    • v.23 no.2
    • /
    • pp.192-197
    • /
    • 2007
  • Bulb color in onions (Allium cepa) is an important trait whose complex inheritance mechanism involves epistatic interactions among major color-related loci. Recent studies revealed that inactivation of dihydroflavonol 4-reductase (DFR) in the anthocyanin synthesis pathway was responsible for the color differences between yellow and red onions, and two recessive alleles of the anthocyanidin synthase (ANS) gene were responsible for a pink bulb color. Based on mutations in the recessive alleles of these two genes, PCR-based markers for allelic selection were developed. In this study, genotype analysis of onions from segregating populations was carried out using these PCR-based markers. Segregating populations were derived from the cross between yellow and red onions. Five yellow and thirteen pink bulbs from one segregating breeding line were genotyped for the two genes. Four pink bulbs were heterozygous for the DFR gene, which explains the continuous segregation of yellow and pink colors in this line. Most pink onions were homozygous recessive for the ANS gene, except for two heterozygotes. This finding indicated that the homozygous recessive ANS gene was primarily responsible for the pink color in this line. The two pink onions, heterozygous for the ANS gene, were also heterozygous for the DFR gene, which indicated that the pink color was produced by incomplete dominance of a red color gene over that of yellow. One pink line and six other segregating breeding lines were also analyzed. The genotyping results matched perfectly with phenotypic color segregation.

Heat or radiofrequency plasma glow discharge treatment of a titanium alloy stimulates osteoblast gene expression in the MC3T3 osteoprogenitor cell line

  • Rapuano, Bruce E.;Hackshaw, Kyle;Macdonald, Daniel E.
    • Journal of Periodontal and Implant Science
    • /
    • v.42 no.3
    • /
    • pp.95-104
    • /
    • 2012
  • Purpose: The purpose of this study was to determine whether increasing the Ti6Al4V surface oxide negative charge through heat ($600^{\circ}C$) or radiofrequency plasma glow discharge (RFGD) pretreatment, with or without a subsequent coating with fibronectin, stimulated osteoblast gene marker expression in the MC3T3 osteoprogenitor cell line. Methods: Quantitative real-time polymerase chain reaction was used to measure changes over time in the mRNA levels for osteoblast gene markers, including alkaline phosphatase, bone sialoprotein, collagen type I (${\alpha}1$), osteocalcin, osteopontin and parathyroid hormone-related peptide (PTH-rP), and the osteoblast precursor genes Runx2 and osterix. Results: Osteoprogenitors began to differentiate earlier on disks that were pretreated with heat or RFGD. The pretreatments increased gene marker expression in the absence of a fibronectin coating. However, pretreatments increased osteoblast gene expression for fibronectin-coated disks more than uncoated disks, suggesting a surface oxide-mediated specific enhancement of fibronectin's bioactivity. Heat pretreatment had greater effects on the mRNA expression of genes for PTH-rP, alkaline phosphatase and osteocalcin while RFGD pretreatment had greater effects on osteopontin and bone sialoprotein gene expression. Conclusions: The results suggest that heat and RFGD pretreatments of the Ti6Al4V surface oxide stimulated osteoblast differentiation through an enhancement of (a) coated fibronectin's bioactivity and (b) the bioactivities of other serum or matrix proteins. The quantitative differences in the effects of the two pretreatments on osteoblast gene marker expression may have arisen from the unique physico-chemical characteristics of each resultant oxide surface. Therefore, engineering the Ti6Al4V surface oxide to become more negatively charged can be used to accelerate osteoblast differentiation through fibronectin-dependent and independent mechanisms.

Estimation of Human Height and Position using a Single Camera (단일 카메라를 이용한 보행자의 높이 및 위치 추정 기법)

  • Lee, Seok-Han;Choi, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.3
    • /
    • pp.20-31
    • /
    • 2008
  • In this paper, we propose a single view-based technique for the estimation of human height and position. Conventional techniques for the estimation of 3D geometric information are based on the estimation of geometric cues such as vanishing point and vanishing line. The proposed technique, however, back-projects the image of moving object directly, and estimates the position and the height of the object in 3D space where its coordinate system is designated by a marker. Then, geometric errors are corrected by using geometric constraints provided by the marker. Unlike most of the conventional techniques, the proposed method offers a framework for simultaneous acquisition of height and position of an individual resident in the image. The accuracy and the robustness of our technique is verified on the experimental results of several real video sequences from outdoor environments.