• Title/Summary/Keyword: Limit of experimental method

Search Result 490, Processing Time 0.025 seconds

An efficient response surface method considering the nonlinear trend of the actual limit state

  • Zhao, Weitao;Qiu, Zhiping;Yang, Yi
    • Structural Engineering and Mechanics
    • /
    • v.47 no.1
    • /
    • pp.45-58
    • /
    • 2013
  • In structural reliability analysis, the response surface method is a powerful method to evaluate the probability of failure. However, the location of experimental points used to form a response surface function must be selected in a judicious way. It is necessary for the highly nonlinear limit state functions to consider the design point and the nonlinear trend of the limit state, because both of them influence the probability of failure. In this paper, in order to approximate the actual limit state more accurately, experimental points are selected close to the design point and the actual limit state, and consider the nonlinear trend of the limit state. Linear, quadratic and cubic polynomials without mixed terms are utilized to approximate the actual limit state. The direct Monte Carlo simulation on the approximated limit state is carried out to determine the probability of failure. Four examples are given to demonstrate the efficiency and the accuracy of the proposed method for both numerical and implicit limit states.

A study on the understanding of limitations of experiential viewpoints for 9th grade students (증명에서 경험적 관점의 한계에 대한 중학교 3학년 학생들의 이해 연구)

  • Rho, Eun Hwan;Kang, Jeong Gi
    • The Mathematical Education
    • /
    • v.54 no.1
    • /
    • pp.13-30
    • /
    • 2015
  • The mathematical object is conceptual. Thus we can not prove the property of mathematical object in experimental viewpoint but in conceptual viewpoint. We performed the experiment for 28 middle school students to investigate whether they understand this. As a result, the majority of student didn't cognize the limit of experimental method. We had also individual interviews with four students. As results, one student was exactly cognizing the limit of experimental method, but he couldn't prove logically. The others didn't cognize the limit of experimental method. They thought that the proposition was already true regardless of the error. And one of them even thought that to be equal approximately was the same of to be equal exactly. Also, one student has confused between the experimental viewpoint and the conceptual viewpoint. This implies that it is necessary to help students understand the limit of experimental method.

Evaluation of limit load analysis for pressure vessels - Part I: Linear and nonlinear methods

  • Chen, Xiaohui;Gao, Bingjun;Wang, Xingang
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1391-1415
    • /
    • 2016
  • Limit load of pressure bearing structures was reviewed in this article. By means of the finite element analysis, limit load of pressurized cylinder with nozzle was taken as an example. Stress classification method and Elastic-plastic finite element analysis combining with limit load determination methods were used to determine limit load of cylinder with nozzle. Comparison of limit load determined by different methods, the results indicated that limit load determined by linearization method was the smallest. Limit load determined by twice elastic slope criterion was the nearest than experimental results. Elastic-plastic finite element analysis had comparably computational precision, but required time consuming. And then the requirements of computer processing and storage capacity by power system became higher and higher. Most of criteria for limit load estimation included any human factors based on a certain substantive characteristics of experimental results. The reasonable criterion should be objective and operational.

Determination of the Forming Limit Strain of Sheet Metals by the Time-dependent Method (시간의존법에 의한 금속판재 성형한계변형률의 결정)

  • Kim, S.G.;Oh, T.H.;Kim, J.D.;Kim, H.J.
    • Transactions of Materials Processing
    • /
    • v.24 no.5
    • /
    • pp.361-367
    • /
    • 2015
  • The forming limit diagram (FLD) is the most commonly used tool for evaluating of sheet metal formability in the manufacturing field as well as the finite element analysis (FEA)-based design process. Determination of the forming limits is considerably influenced by testing/measuring machines, techniques and conditions. These influences may cause a large scatter in FLD from laboratory to laboratory. Scatter is especially true when the ‘position-dependent method’, as is specified in most national and international standards, is used. In the current study a new ‘time-dependent method’ is proposed, which is to determine the forming limit strains more accurately and reasonably when producing a FLD from experimental data. This method is based on continual strain measurement during the test. The results are compared to those from the existing standardized methods.

AnInvestigation on the Limit Temperature for Applying Maturity Method in Analyzing Strength Development of Concrete (적산온도방식에 의한 콘크리트 강도증진해석에 있어 한계온도범위의 검토)

  • 한민철;전층근;이건철;윤기원;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.111-116
    • /
    • 1997
  • In this paper, the limit temperature for applying maturity method are discussed. 4 kinds of W/C in combination of 7kinds of curing temperature are selected as experimental parameters. According to the experimental results, high curing temperature and low W/C gain in strength rapidly. And maturity rule can be applied less than $30^{\cire}C$ in W/C of 30~60% in the conditions of this experiment.

  • PDF

Limit Analysis of Axisymmetric Forward Extrusion (축 대칭 전방 압출의 극한 해석)

  • Kim, Byung-Min;Choi, In-Keun;Choi, Jae-Chan;Lee, Jong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.3
    • /
    • pp.93-104
    • /
    • 1991
  • Limit analysis is based on the duality theorem which equates the least upper bound to the greatest lower bound. In this study, limit analysis of axisymmetric forming problem with workhardening materials is formulated by minimizing the upper bound functional and finite element program is developed for forward estrusion. Limit loads, velocity and flow line fields are directly obtained under various process conditions and deformation characteristics such as strains, strain rates and grid distortion are obtained from the optimum velocity components by numerical calculation. The experimental observation was carried out for extrusion and compared with computed results. The good agreement between theoretical and experimental results is shown that the developed programming is very effective for the analysis of axisymmetric extrusion.

  • PDF

Nonlinear Combustion Instability Analysis of Solid Rocket Motor Based on Experimental Data

  • Wei, Shaojuan;Liu, Peijin;Jin, Bingning
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.58-61
    • /
    • 2015
  • Combustion instability in solid rocket motors is a long-term open problem since the first rockets were used. Based on the numerous previous studies, it is known that the limit cycle amplitude is one of the key characteristics of the nonlinear combustion instability in solid rocket motors. Flandro's extended energy balance corollary, aims to predict the limit cycle amplitude of complex, nonlinear pressure oscillations for rockets or air-breathing engines, and leads to a precise assessment of nonlinear combustion instability in solid rocket motors. However, based on the comparison with experimental data, it is revealed that the Flandro's method cannot accurately describe such a complex oscillatory pressure. Thus in this work we make modifications of the nonlinear term in the nonlinear wave equations which represents the interaction of different modes. Through this modified method, a numerical simulation of the cylindrical solid rocket has been carried out, and the simulated result consists well with the experimental data. It means that the added coefficient makes the nonlinear wave growth equations describe the experimental data better.

Forming Limit Diagram Prediction for Ultra-Thin Ferritic Stainless Steel Using Crystal Plasticity Finite Element Method (결정소성 유한요소해석에 의한 극박 스테인리스강의 성형한계선도 예측)

  • Bong, H.J.;Lee, M.G.;Han, H.N.
    • Transactions of Materials Processing
    • /
    • v.26 no.3
    • /
    • pp.144-149
    • /
    • 2017
  • In order to characterize the macroscopic mechanical response of ultra-thin (0.1 mm thick) ferritic stainless steel sheet at various loading paths, a crystal plasticity finite element method (CP-FEM) was introduced. The accuracy of the prediction results was validated by comparing with the experimental data. Based on the results, the forming limit diagram (FLD) was predicted using a modified Marchinicak-Kuczinski model coupled to a non-quadratic anisotropic yield function, namely, Yld2000-2d. The predicted FLD was found to be in good agreement with the experimental data.

Vulnerability assessment of strategic buildings based on ambient vibrations measurements

  • Mori, Federico;Spina, Daniele
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.2
    • /
    • pp.115-132
    • /
    • 2015
  • This paper presents a new method for seismic vulnerability assessment of buildings with reference to their operational limit state. The importance of this kind of evaluation arises from the civil protection necessity that some buildings, considered strategic for seismic emergency management, should retain their functionality also after a destructive earthquake. The method is based on the identification of experimental modal parameters from ambient vibrations measurements. The knowledge of the experimental modes allows to perform a linear spectral analysis computing the maximum structural drifts of the building caused by an assigned earthquake. Operational condition is then evaluated by comparing the maximum building drifts with the reference value assigned by the Italian Technical Code for the operational limit state. The uncertainty about the actual building seismic frequencies, typically significantly lower than the ambient ones, is explicitly taken into account through a probabilistic approach that allows to define for the building the Operational Index together with the Operational Probability Curve. The method is validated with experimental seismic data from a permanently monitored public building: by comparing the probabilistic prediction and the building experimental drifts, resulting from three weak earthquakes, the reliability of the method is confirmed. Finally an application of the method to a strategic building in Italy is presented: all the procedure, from ambient vibrations measurement, to seismic input definition, up to the computation of the Operational Probability Curve is illustrated.

Estimation of Generalized Soil-Water Characteristic Curves Using Liquid Limit State (액성한계상태를 이용한 흙-수분 특성곡선의 평가)

  • Sung, Sang-Gyu;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.146-153
    • /
    • 2004
  • The goals of this study are to investigate the feasibility of the reference state approach in determining the generalized soil-water characteristic curve that is essential for characterization of unsaturated soil behavior. The soil-water characteristic curves are obtained from a number of specimens of fine-grained residual soils compacted with different void ratios. Based on the experimental test results, the feasibility of using the liquid limit state as the reference state for predicting the soil-water characteristic curve are verified. Finally, through the regression analysis of experimental data using the equation of Fredlund and Xing (1994), a reliable method is proposed to predict the generalized soil-water characteristic curve of fine-grained residual soils using the liquid limit state as the reference.

  • PDF