• Title/Summary/Keyword: Limestone

Search Result 1,133, Processing Time 0.028 seconds

The Recycling of Inorganic Industrial Waste in Cement Industry (시멘트산업에서 무기질 산업 폐·부산물의 재활용)

  • Kang, S.K.;Nam, K.U.;Seo, H.N.;Kim, N.J.;Min, K.S.;Chung, H.S.;Oh, H.K.
    • Clean Technology
    • /
    • v.6 no.1
    • /
    • pp.61-69
    • /
    • 2000
  • In this study, generation process and properties of inorganic industrial waste which can be used in cement industry were investigated. The scheme of recycling to use the selected waste as raw materials, mineralizer and flux, admixture and raw materials for special cement was decided and then various experiments were carried out. The experimental results were as follows ; In the use of industrial waste as raw materials, ferrous materials could be substituted by Cu-slag, Zn-slag, electric arc furnace or convertor furnace slag etc., and a siliceous material could be substituted by sand from cast-iron industry. By-products from sugar or fertilizer industry, which has $CaF_2$ as the main component, and jarosite from Zn refinery enabled clinker phases to be formed at lower temperature by $100{\sim}150^{\circ}C$. Adding Cu slag and STS sludge in proper proportion to cement improved properties of cement. Fly ash and limestone powder as admixture had the same effect on cement. As a raw material for special cement, aluminium waste sludge could be used in making ultra early strength cement, which had the compressive strength of $300kg/cm^2$ within 2hours. And two different ashes from municipal incinerator could be raw materials of the cement which was mainly composed of $C_3S$ and $C_{11}A_7{\cdot}CaCl_2$ as clinker phases.

  • PDF

Economic Evaluation of Rare Earth Elements Contained in Coal Ash (석탄재에 포함된 희토류의 경제성 평가)

  • Kim, Youngjin;Kim, Seunghyun;Lee, Jaeryeong
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.26-35
    • /
    • 2019
  • This study aims to introduce and economical review on the possibilities of rare earth elements(REEs) recovery from coal ashes and the analysis of economical evaluation factors based on the data for securing domestic rare earth elements. The cut-off grade of REEs on recovering from coal ash was confirmed to be 1,000 ppm on total rare earth oxides(TREO) basis, and while the economic value of coal ash changed with contents and specific elements of rare earth elements. This shall be resulted in the price differences of rare earth elements required by the current industry, and it probably varies depending on the future demand of rare earth components. For developing of commercial recovery technology on REEs in coal ashes, many researches have been carried out by various analyzing methods, such as evaluation of holding value of REEs in ashes, assessment between supply and demand of industry, comparison of investment and its profitability for the REEs's production from coal ashes, and so on. Although these methods have been suggested, its recovery system with economical feasibility could not been confirmed up to present. In this reason, the process design of recovering REEs from coal ash shall be researched continuously to solve the problems of the global rare earth market. And also these researches shall be conducted actively in Korea for the purpose of securing the REEs resources and their recovering technologies.

Adsorption and Degradation of Alkylbenzenesulfonate by Soils (Alkylbenzenesulfonate의 토양(土壤)에 의한 흡착(吸着)과 분해(分解))

  • Ha, Sang-Keon;Joo, Jin-Ho;Um, Myung-Ho;Lim, Hyung-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.2
    • /
    • pp.169-175
    • /
    • 1988
  • A laboratory experiment was conducted to investigate the effects of pH, organic matters and anion on the adsorption and degradation of surfactant by different soils; Anmi series (limestone region), Gangseo series (alluvial soil). For this study, Alkyl Benzene Sulfonate (ABS ; Sodium Dodecylbenzenesulfonate) was used as a surfactant. The results were as follows: 1. Adsorption of ABS by soils was correlated positively with the equilibrium concentration of ABS in a soil suspension. (Anmi seris : r=0.9855, Gangseo series : r=0.9931). 2. Adsorption rate of ABS by soils was about 70% of the treated concentration ($600{\mu}g$ ABS/g soil) in a range of pH 4 to pH 5, and about 20% for pH 8. 3. Addition of electrolytes increased ABS adsorption by soils in a soil suspension; the higher concentration, the higher adsorption. But the influence among electrolytes was not significant. 4. Adsorption of ABS by soils was not affected by soil organic matter content in this experiment. 5. Degradation rate of ABS in a soil suspension was about 85% at $30^{\circ}C$, and about 10 to 15% at $10^{\circ}C$. Addition of sewage accelerated the degradation rate regardless of temperature and reached about 85% in a week.

  • PDF

Topographic Survey at Small-scale Open-pit Mines using a Popular Rotary-wing Unmanned Aerial Vehicle (Drone) (보급형 회전익 무인항공기(드론)를 이용한 소규모 노천광산의 지형측량)

  • Lee, Sungjae;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.462-469
    • /
    • 2015
  • This study carried out a topographic survey at a small-scale open-pit limestone mine in Korea (the Daesung MDI Seoggyo office) using a popular rotary-wing unmanned aerial vehicle (UAV, Drone, DJI Phantom2 Vision+). 89 sheets of aerial photos could be obtained as a result of performing an automatic flight for 30 minutes under conditions of 100m altitude and 3m/s speed. A total of 34 million cloud points with X, Y, Z-coordinates was extracted from the aerial photos after data processing for correction and matching, then an orthomosaic image and digital surface model with 5m grid spacing could be generated. A comparison of the X, Y, Z-coordinates of 5 ground control points measured by differential global positioning system and those determined by UAV photogrammetry revealed that the root mean squared errors of X, Y, Z-coordinates were around 10cm. Therefore, it is expected that the popular rotary-wing UAV photogrammetry can be effectively utilized in small-scale open-pit mines as a technology that is able to replace or supplement existing topographic surveying equipments.

Hydration Reaction of Non-Sintering Cement Using Inorganic Industrial Waste as Activator (무기계 산업폐기물을 자극제로 이용한 비소성 시멘트의 수화반응)

  • Mun, Kyoung-Ju;Lee, Chol-Woong;So, Seung-Young;Soh, Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.267-274
    • /
    • 2006
  • Greenhouse gas reduction will be highlighted as the most pending question in the cement industry in future because the production of Portland cement not only consumes limestone, clay, coal, and electricity, but also release waste gases such as $CO_2,\;SO_3$, and NOX, which can contribute to the greenhouse effect and acid rain. To meet the increase of cement demand and simultaneously comply with the Kyoto Protocol, cement that gives less $CO_2$ discharge should be urgently developed. This study aims to manufacture non-sintering cement(NSC) by adding phosphogypsum(PG) and waste lime(WL) to granulated blast furnace slag(GBFS) as sulfate and alkali activators. This study also Investigates the hydration reaction of NSC through analysis of scanning electron microscopy(SEM), X-ray diffraction(XRD), differential thermal analysis(DTA), and pH. Results obtained from analysis of the hydrate have shown that the glassy films of GBFS are destroyed by the activation of alkali and sulfate, ions eluted from the inside of GBFS react with PG and produce ettringite, and consequently the remaining component in GBFS slowly produced C-5-H(I) gel. Here, PG is considered not only to play the role of simple activator, but also to work as a binder reacting with GBFS.

Heavy Metal Contamination and the Roles of Retention Pond and Hydrologic Mixing for Removal of Heavy Metals in Mine Drainage, Kwangyang Au-Ag Mine Area (광양 폐 금-은 광산 지역 광산폐수의 중금속 오염과 중금속의 제거에 있어 소택지와 지류 혼합의 역할 평가)

  • 정헌복;윤성택;김순오;소칠섭;정명채
    • The Journal of Engineering Geology
    • /
    • v.13 no.1
    • /
    • pp.29-50
    • /
    • 2003
  • Physicochemical Properties of acid mine water of the Chonam-ri Creek and the Sagok-ri Creek in the Kwangyang Au-Ag mine area were determined using geochemical approaches. Metal contamination (Cd, Cu, Pb, Zn) is more serious in the Chonam-ri Creek than in the Sagok-ri Creek. However, the contents of Al and Fe is higher in the Sagok-ri Creek. Such differences between the two creeks probably reflect the abundance and composition of ore minerals. The attenuation processes for acid mine water in both creeks were investigated. In the Chonam-ri Creek, a small retention pond which contains limestone plays an important role in the removal of heavy metals by adsorption or coprecipitation due to increase of pH. The capacity of metal scavenging in this pond depends on the seasonal variation of inflow volume. Reddish yellow precipitates sampled in the Chonam-ri Creek were analyzed by XRD, SEM-EDS, EPMA, and chemical decomposition. The precipitates mainly consist of goethite and are also enriched in Al, Mn, Cu and Zn. This inditates that precipitation of goethite is important for scavenging those trace elements, possibly due to adsorption or coprecipitation. In the Sagok-ri Creek, on the other hand, hydrologic mixing of uncontaminated tributaries results in removal of heavy metals with iron hydroxides precipitation due to the pH increase. The mechanisms proposed for metal attenuation at the confluence between contaminated mine water and uncontaminated tributary water are also explained by the property-property plots.

Investigation of Plume Opacity Induced by the Combustion of Orimulsion (오리멀젼 연소로 인한 가시백연의 원인 규명)

  • Kim, Young-Hun;Kim, Jong-Ho;Joo, Ji-Bong;Lee, Jeong-Jin;Kim, Jin-Soo;Kwak, Byung-Kyu;Jeong, Jin-Heun;Park, Soong-Keun;Yi, Jong-Heop
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.3
    • /
    • pp.297-303
    • /
    • 2007
  • Orimulsion, a bitumen-in-water emulsified fuel, has been used throughout the world as a substitute fuel for heavy oil and coal. Orimulsion has relatively high levels of sulfur, nickel, and vanadium, compared to other fuel oils and coals, and has been the subject of much debate regarding the environmental impacts. In Korea, Y power plant has operated boilers with Orimulsion as a fuel, and they has some drawbacks during the plant operation, such as plume opacity. In this study, we investigated the cause of formation mechanism and factors for the plume opacity by investigating the operation data, and measuring the particle size distribution at EP(Electrostatic Precipitator), FGD(Fuel Gas Desulfurization) and TMS(Telecommunications Management System) units. Resulting data showed the primary particles below 1 ${\mu}m$ formed were regrown by the recombination of $SO_3$ in wet-limestone FGD process, and thus the secondary particles are induced to cause the plume opacity.

Applications of Improved Low-Flow Mortar Type Grouting Method for Road Safety and Constructability in Dangerous Steep Slopes (급경사지 붕괴 위험지역의 도로 안전 및 시공성을 고려한 개선된 저유동 몰탈형 그라우팅공법 적용성 분석)

  • Choi, Gisung;Kim, Seokhyun;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.409-415
    • /
    • 2020
  • Low-flow mortar injection method grouting technology was selected and the traffic area was preserved as much as possible in order to secure safety for road traffic when the outflow and subsidence of landfill occurred due to ground-water, and etc. In particular, the current existing method was newly improved since there are risks of damage such as hydraulic fracturing at the lower part of the road, spilling of soil particles on steep slopes, and bumps on the road due to excessive injection pressure during construction. This study was carried out at the site of reinforcement work on the road as a maintenance work for the danger zone for collapse of the steep slope of the 00 hill, which was ordered from the 00 city 00 province. The improved low-flow mortar type grouting method adopted a new automated grouting management system and especially, it composites the method for grouting conditions decision by high-pressure pre-grouting test and injection technology by AGS-controlled and studied about grouting effect analysis by using new technology. By applying the improved low-flow mortar type grouting method, it was possible to lay the groundwork for road maintenance work such as the prevention of subsidence of old roads, uneven subsidence of buildings and civil engineering structures, and of soil leakage of ground-water spills. Furthermore, the possibility of application on future grouting work not only for just construction that prevents subsidence of old roads but also for various buildings and civil engineering structures such as railroads, subways, bridges, underground structures, and boulder stone and limestone areas was confirmed.

Biological Water Quality Assessment of Joyang-river Located at the Upper Region of North Han-river Using DAIpo and TDI (북한강 상류수계인 조양강의 DAIpo와 TDI를 이용한 생물학적 수질평가)

  • Kim, Hun-Nyun;Park, Hea-Kyung;Park, Sang-Jung;Lee, Ok-Min
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.3
    • /
    • pp.289-301
    • /
    • 2012
  • A biological assessment of water quality was made at 9 sites of the Joyang-river and inflow streams located in Jeongseon-gun Gangwon-do, from June 2008 to September 2010. The investigation consisted of physico-chemical factors, biomass, and standing crops of epilithic diatoms. In addition, the community structure of epilithic diatoms was analyzed, and the water quality was assessed using DAIpo and TDI. The pH varied from 7.4~10.2 which is attributed to the Joyang-river area consisting of limestone. A total of 117 taxonomic groups of epilithic diatoms, including: 2 orders, 6 families, 23 genera, 95 species, 15 varieties, 2 forms, and 5 unidentified species, were found in the Joyang-river. 11 taxa, including Achnanthes laterostrata and Cymbella delicatula which live in neutral to alkali pH, were found. An indicator species of alkali waters, Cymbella delicatula, was routinely observed to have a relative frequency of over 10% in I3 and I4. In the result of the biological assessment using DAIpo, the Joyang-river was rated class A, with an average of 77.03 and inflow streams were rated class B with an average of 65.84. As for the results of TDI analysis, the Joyangriver was rated class A~B, and inflow streams were rated class A~D. Accordingly, the water quality of the Joyang-river was determined to be superior to that of inflow streams. Although the main stream showed low water quality at sites J2 and J3, correlating with a reduction in the quality of inflow stream, I1 in September 2009.

Sporocarp-forming Arbuscular Mycorrhizal Fungi, Glomus spp. in Forest Soils of Korea (우리나라의 산림토양(山林土壤)에 분포(分布)하는 포자낭과(胞子囊果)를 형성하는 아버스큘균근균(菌根菌), Glomus속(屬))

  • Koo, Chang-Duck;Kim, Tae-Hun;Yi, Chang-Keun;Lee, Won-Kyu;Kang, Chang-Ho;Lee, Byung-Chun;Lee, Seung-Kyu
    • The Korean Journal of Mycology
    • /
    • v.20 no.1
    • /
    • pp.29-36
    • /
    • 1992
  • Glomus species forming sporocarps were collected at limestone areas in Danyang, on coal mine overburdens in Munkyung, on plantations of Celtis sinensis in the Jindo island and Cryptomeria japonica in the Namhae island, on the Ilchulbong crater base and at a shrubby land near the Chunjiyeon fall. One of the characteristics of Glomus clavisporum is the thick wall ($25-33{\mu}m$) of its cylinderic chlamydospores at the apex. G. heterosporum chlamydospores are loosely connected with each other through brown thick-walled hyphae. G. liquidambaris has paraphysis between chlamydospores. G. rubiforme is blackberry alike. G. sinuosum has a peridium composed of golden yellow thick-walled($2-3{\mu}m$) sinuous hyphae. G. taiwanense has red brown sporocarps with yellow spores of which wall is thickest at the apex.

  • PDF