• 제목/요약/키워드: Limestone

검색결과 1,131건 처리시간 0.025초

풍촌지역 석회석을 이용한 침강성탄산칼슘의 제조 (Manufacture of Precipitated Calcium Carbonate from Pungchon Limestone)

  • 이재장;박종력
    • 산업기술연구
    • /
    • 제21권A호
    • /
    • pp.251-256
    • /
    • 2001
  • This research is focused on an improvement of additional value of high grade limestone. To obtain the basic data of precipitated calcium carbonate(PCC), studies of physical properties of limestone, calcination and hydration characteristics, the characteristics to manufacture quick lime, hydrated lime, ground calcium carbonate and precipitated calcium carbonate were performed. In the carbonation process, formation of rombohedral must be kept under $10^{\circ}C$ for reaction. Although the temperature of reaction of lime milk was limited under $30^{\circ}C$ for a colloidal PCC manufacture, over $50^{\circ}C$ for spindle type PCC. The recommended reaction conditions for colloidal PCC are $20^{\circ}C$ of reaction temperature, 4% of $Ca(OH)_2$ concentration, 1000rpm of stirring rate and 200ml/min of $CO_2$ gas flow rate.

  • PDF

동명광산(東明鑛山)의 스카른형(型) 회중석(灰重石) 광상(鑛床)의 성인(成因) (On the Genesis of Skarn-type Scheelite Deposits at the Dongmyoung mine)

  • 오민수;박기화
    • 자원환경지질
    • /
    • 제16권1호
    • /
    • pp.37-49
    • /
    • 1983
  • The skarn type tungsten deposits are developed in the contact aureole of Jurassic biotite-hornblende granodiorite and limestone beds. The latter can be divided into the Great Limestone Series of Joseon System and Gabsan Formation which is correlative to the Hongjeom Series of Pyeongahn System. The skarns are impregnated in the limestone, sandstone, schist and granodiorite, and showing zonal distribution. The five skarn zones are from fresh limestone inwards to wollastonite-skarn, clinopyroxene-skarn, clinopyroxene-garnet skarn, garnet skarn and vesuvianite skarn zone. The ore mineral, scheelite, disseminates in the clinopyroxene-garnet and vesuvianite skarn zone, and the size of the scheelite crystals in vesuvianite skarn zone is larger than in clinopyroxene- garnet skarn zone. According to the mineral paragenesis and the composition of skarn minerals, oxygen fugacity ($fo_2$) is low. Fluid inclusions in quartz comprise much $LCO_2$ and fluid inclusion studies revealed that the homogenization temperatures range $240-290^{\circ}C$.

  • PDF

연화광산(蓮花鑛山)의 지질광상(地質鑛床) (Geology and Ore Deposits of Yeonhwa Mine)

  • 한갑수
    • 자원환경지질
    • /
    • 제2권3호
    • /
    • pp.47-57
    • /
    • 1969
  • The Yeonhwa Lead and Zinc Mine is located in northern part of Kyeongsang-Buk-Do, Korea, and is economically most important mine because it produces most part of the output of lead and zinc minerals in the country. Ore deposits of the mine are localized in the Pungchon Formation and several limestone seams of upper Myobong Formation in Cambrian Age. Ore solution ascended along the fractures of N-S, NE-SW or NW-SE trends and along slate and limestone boundary, and then replaced selectively limestone to make ore bodies. Skarn minerals are consisted of hedenbergite, diopside, and main sulfide mineral orebodies are composed of galena, zincblende, pyrrhotite, pyrite and a minor amounts of arsenopyrite and chalcopyrite. Metal ratio, ${\rho}_{Pb}={\frac{Pb(%)}{Pb(%)+Zn(%)}}{\times}100$, illustrates the zona I arrangements of some ore bodies. It will be inferred the flow trending of ore solution and the process reaction with adjacent country rocks. The sub-divided formations of the Pungchon limestone and Myobong slate are very useful as a criteria for detecting probable ore location. Rhodochrosite veins are good evidence for searching of ore location, especially on Pb-rich ore bodies.

  • PDF

Effect of Grain Size and Replacement Ratio on the Plastic Properties of Precipitated Calcium Carbonate Using Limestone as Raw Material

  • Baek, Chul Seoung;Cho, Kye Hong;Ahn, Ji-Whan
    • 한국세라믹학회지
    • /
    • 제51권2호
    • /
    • pp.127-131
    • /
    • 2014
  • Precipitated calcium carbonate(PCC) inorganic fillers for plastic offera higher replacement ratio with improved mechanical properties than any other inorganic fillers. Due to its secure economic feasibility, its fields of application areexpanding. For optimized PCC grain size and polymer replacement ratio, it is good to maintain at least $0.035{\mu}m$ grains and keep double the grain size of distance between particles, depending on the molecular weight and volume replacement rate of the polymer. PCC has unique characteristics, ie, with smaller grain size, dispersibility decreases, and if grain size is not homogenous, polymer cracking occurs. The maximum replacement ratio of PCC is approximately 30%, but in the range of 10 - 15% it produces the highest mechanical strength. When mixed with a biodegradable plastic like starch, it also improves initial environmental degradability.

Evaluation of mathematical models for prediction of slump, compressive strength and durability of concrete with limestone powder

  • Bazrafkan, Aryan;Habibi, Alireza;Sayari, Arash
    • Advances in concrete construction
    • /
    • 제10권6호
    • /
    • pp.463-478
    • /
    • 2020
  • Multiple mathematical modeling for prediction of slump, compressive strength and depth of water penetration at 28 days were performed using statistical analysis for the concrete containing waste limestone powder as partial replacement of sand obtained from experimental program reported in this research. To extract experimental data, 180 concrete cubic samples with 20 different mix designs were investigated. The twenty non-linear regression models were used to predict each of the concrete properties including slump, compressive strength and water depth penetration of concrete with waste limestone powder. Evaluation of the models using numerical methods showed that the majority of models give acceptable prediction with a high accuracy and trivial error rates. The 15-term regression models for predicting the slump, compressive strength and water depth were found to have the best agreement with the tested concrete specimens.

석회석 혼합시멘트의 분말도 및 SO3 함량이 시멘트 모르타르에 미치는 영향 (Effect of Fineness and SO3 Content of Limestone Mixed Cement on Mortar)

  • 인병은;김진성;남성영;김춘식;조성현
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.105-106
    • /
    • 2023
  • Using the limestone powder as material that can alternate the clinker, it seems to get positive effect as filler and enhance workability of cement, but the amount of replacement can affect compressive strength of cement. This study was evaluated the effect of limestone mixed cement fineness and SO3 content on cement mortar. As a result of measuring the compressive strength, it showed 93% compared to the compressive strength of Plain 28 days at fineness 4,400 and SO3 2.6%. It is judged that additional research is necessary to express the strength equivalent to that of Plain.

  • PDF

석회석 미분말 혼입량과 분말도가 콘크리트의 고온 역학적 특성에 미치는 영향 (Effect of limestone powder replacement ratio and fineness on high temperature mechanical properties of concrete )

  • 최윤성;김규용;유하민;이예찬;서동균;남정수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.271-272
    • /
    • 2023
  • In this study, limestone powder used to replace cement at a weight ratio of 10%, 15%, and 20% was tested at 3000, 4000, and 5000 levels of fineness. The mechanical properties of the concrete were investigated before and after exposure to high temperatures (100, 300, and 500℃), and the effects of limestone powder fineness and replacement ratio on the mechanical properties of the concrete were analyzed.

  • PDF

Stabilization of Metals-contaminated Farmland Soil using Limestone and Steel Refining Slag

  • Lim, Jeong-Muk;You, Youngnam;Kamala-Kannan, Seralathan;Oh, Sae-Gang;Oh, Byung-Taek
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제19권5호
    • /
    • pp.1-8
    • /
    • 2014
  • The metals contamination of farmland soil nearby abandoned metal mine was serious problem in Korea. Stabilization of contaminated soil was reported using various stabilizers. Application of limestone and steel refining slag was reported as effective stabilizers in the stabilization of metals. The batch studies confirmed that the mixture of limestone and steel refining slag was suitable for stabilization of metals in contaminated soil. The limestone and steel refining slag mixture (2 : 1 and 3 : 2) were used in column studies and it was confirmed that the stabilizers effectively stabilized heavy metals in contaminated soil. The pH of the soil was increased with the addition of stabilizers. Total leached concentration of metals from the column study was reduced 44, 17, and 93% in comparison to the control at arsenic, cadmium and copper, respectively. The sequential extraction studies showed that the exchangeable fraction was changed into carbonate bound fraction (Cd and Cu) and Fe-Mn oxide bound fraction (As). Based on the results we confirmed that 2:1 ratio of limestone and steel refining slag effectively stabilizes the heavy metals. The mixed treatment of lime stone with steel refining slag would be an effective and feasible method for controlling metals leaching in contaminated soil.