• Title/Summary/Keyword: Limbic system

Search Result 45, Processing Time 0.03 seconds

Regional Gray Matter Volume Reduction Associated with Major Depressive Disorder: A Voxel-Based Morphometry

  • Tae, Woo-Suk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.1
    • /
    • pp.10-18
    • /
    • 2015
  • Background and Purpose: The association between the low emotional regulation and the brain structural change of major depressive disorder (MDD) has been proposed, but the voxel-based morphometry (VBM) studies on female MDD are rare. The purpose of the present study was to show the regional volume changes of gray matter (GM) in female patients with MDD by optimized VBM. Methods: To control subjects homogeneity, twenty female MDD patients and age, sex matched 21 normal controls were included for the VBM analysis. To identify the change of regional gray matter volume (GMV), the optimized VBM was performed with T1 MRIs. The amounts of gray/white matter and intracranial cavity volumes (ICV) were measured. The analysis of covariance (ANCOVA) and partial correlation analyses covariate with age and ICV were applied for VBM. Results: The age and ICV distributions were similar between the two groups. In the ANCOVA, the total GMV of MDD was smaller than that of normal controls. In the VBM, regional GMV was relatively decreased in the limbic system (amygdalae, ambient gyri, hippocampi heads, subiculum, posterior parahippocampal gyri, pulvinar nuclei, dorsal posterior cingulate gyri, and left pregenual cingulate gyrus). The lingual gyri, short insular gyri, right fusiform gyrus, and right inferior frontal gyrus were also showed decreased regional GMV. Conclusion: The results of this study indicate that the female MDD is mainly associated with the structural deficits of the limbic system and limbic system related cortices, which were known to the center of emotions.

Activation of Limbic Area due to Oxygen Administration during Visuospatial Task (공간 과제 수행 시 고농도 산소 공급에 의한 변연계 활성화에 관한 연구)

  • Choi, Mi-Hyun;Lee, Su-Jeong;Yang, Jae-Woong;Kim, Ji-Hye;Choi, Jin-Seung;Tack, Gye-Rae;Chung, Soon-Cheol;Kim, Hyun-Jun
    • Science of Emotion and Sensibility
    • /
    • v.12 no.4
    • /
    • pp.443-450
    • /
    • 2009
  • The purpose of this study is to observe activation of limbic system during performing visuospatial tasks by 21% and 30% oxygen administration. Eight right handed male college students were selected as the subjects for this study. A visuospatial task was presented while brain images were scanned by a 3T fMRI system. The experiment consisted of two runs: one was a visuospatial task under normal air(21% oxygen) condition and the other under hyperoxic air(30% oxygen) condition. The neural activations were observed at the limbic system which is seperated 8 regions such as cingulate gyrus, thalamus, limbic lobe, hypothalamus, hippocampus, parahippocampa gyrus, amygdala, and mammiilary body. By two oxygen levels, activation areas of limbic system are almost identical. Increased neural activations were observed in the cingulate gyrus and thalamus with 30% oxygen administration compared to 21% oxygen. During 30% oxygen administration, improvement of visuospatial task performance has a relation to increase of neural activation of subcortical structures such as thalamus and cingulate gyrus as well as cerebral cortex.

  • PDF

Human Sensibility and Its Measurement and Evaluation (인간감성특성과 감성의 측정평가)

  • 이구형
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1997.11a
    • /
    • pp.37-42
    • /
    • 1997
  • 인간의 감성은 감정과는 구분되는 심리적 현상으로 감정이 강도가 높으며 생리적, 신체적 반응을 동반하는데 비하여, 감성은 강도가 낮으며 겉으로 나타나는 생리적 변화가 없다. 감정은 외부의 감각자극에 대하여 두뇌에서 단계적인 정보처리의 결과로 나타나지만 감성은 반사적이고 직관적으로 발생된다. 감정은 대상에 대하여 여러사람이 동일한 반응을 보이는 공통성과 객과성을 갖지만, 감성은 동일한 대상에 대해서도 개인에 따라 다양하게 나타나며 시간과 환경에 따라 변화한다. 감정은 두뇌에서 cortex와 관련이 있으나 감성은 limbic system과 관련이 있다. 이러한 감성의 특성과 발생과정의 이해는 앞으로 감성을 연구하는 방법의 결정에 중요한 자료하 된다. 감성은 개인의 생활경험에 의한 기억이 limbic system 에 형성되어 감각정보에 대한 반응을 하게 되며, limbic system은 hypothalamus와 밀접한 관계를 갖고 있어, 감성의 측정평가를 위해서는 생활경험에 영향을 미치는 제반 요인들의 파악과 함께 자율신경계의 반응을 측정할 수 있는 방법의 개바이 요구된다.

  • PDF

The Fornix: Functional Anatomy, Normal Neuroimaging, and Various Pathological Conditions

  • Choi, Young Jae;Lee, Eun Ja;Lee, Jung Eun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.2
    • /
    • pp.59-75
    • /
    • 2021
  • The fornix is the major white-matter outflow tract from the hippocampus; it has a significant role in cognitive function. It is readily imaged via magnetic resonance imaging; its main parts are the crura, commissure, body, and columns. In this pictorial essay, we describe and illustrate the functional and imaging anatomy of the fornix and limbic system, as well as various disease entities involving the fornix.

A case of paraneoplastic limbic encephalitis due to ovarian mature teratoma (성숙 난소기형종에 동반된 부신생물 변연계뇌염 1례)

  • Kim, Seong-Heon;Kim, Hye-Young;Im, Young-Tak;Nam, Sang-Ook;Kim, Young-Mi
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.4
    • /
    • pp.603-606
    • /
    • 2010
  • Paraneoplastic limbic encephalitis, a remote effect of cancer without nervous system metastasis, is rare, especially in childhood. Here, we report a case of paraneoplastic limbic encephalitis associated with an ovarian mature teratoma in an adolescent girl. The 15-year-old girl developed neuropsychiatric symptoms, memory loss, seizures, and unconsciousness. Cerebrospinal fluid analysis and brain magnetic resonance imaging (MRI) findings were normal, while single photon emission computed tomography imaging showed hypoperfusion in both temporal lobes. Ultrasound and MRI of the abdomen revealed a left ovarian cystic mass. The patient experienced a significant recovery of cognitive function after surgical resection of the tumor, which was pathologically identified as a mature ovarian teratoma, and treatment with intravenous immunoglobulin.

Understanding of Neural Mechanism of Mood Disorders : Focused on Neuroimaging Findings (기분장애 뇌신경기저에 대한 이해 : 뇌영상 연구를 중심으로)

  • Kim, Yoo-Ra;Lee, Kyoung-Uk
    • Korean Journal of Biological Psychiatry
    • /
    • v.18 no.1
    • /
    • pp.15-24
    • /
    • 2011
  • Mood disorder is unlikely to be a disease of a single brain region or a neurotransmitter system. Rather, it is now generally viewed as a multidimensional disorder that affects many neural pathways. Growing neuroimaging evidence suggests the anterior cingulate-pallidostriatal-thalamic-amygdala circuit as a putative cortico-limbic mood regulating circuit that may be dysfunctional in mood disorders. Brain-imaging techniques have shown increased activation of mood-generating limbic areas and decreased activation of cortical areas in major depressive disorder(MDD). Furthermore, the combination of functional abnormalities in limbic subcortical neural regions implicated in emotion processing together with functional abnormalities of prefrontal cortical neural regions probably result in the emotional lability and impaired ability to regulate emotion in bipolar disorder. Here we review the biological correlates of MDD and bipolar disorder as evidenced by neuroimaging paradigms, and interpret these data from the perspective of endophenotype. Despite possible limitations, we believe that the integration of neuroimaging research findings will significantly advance our understanding of affective neuroscience and provide novel insights into mood disorders.

Expression and Localization of Brain Glutamate Dehydrogenase with Its Monoclonal Antibody

  • Lee, Jong-Eun;Choe, Su-Yeong;Jo, Seong-U
    • Animal cells and systems
    • /
    • v.2 no.1
    • /
    • pp.71-80
    • /
    • 1998
  • Glutamate dehydrogenase (GDH) is one of the main enzymes involved in the formation and metabolism of the neurotransmitter glutamate. In the present study, we investigated the distribution of the GDH-immunoreactive cells in the rat brain using monoclonal antibodies against bovine brain GDH isoprotein. GDH-immunoreactive cell were distributed in the basal ganglia, thalamus and the nuclei belong to substantia innominata, and its connecting area, subthalamic nucleus, zona incerta, and substantia niqra. We could see GDH-immunoreactive cells in the hippocampus, septal nuclei associated with the limbic system, the anterior thalamic nuclei connecting between the hypothalamus and limbic system, and its associated structures, amygdaloid nuclear complex, the dorsal raphe and median raphe nuclei and the reticular formation of the midbrain. The GDH-immunoreactive cells were shown in the pyramidal neurons of the cerebral cortex, the Purkinie cells of the cerebella cortex, their associated structures, ventral thalamic nuclei and the reticular thalamic nuclei that seem to function as neural conduction in the thalamus.

  • PDF

AUTISTIC DISORDER AND OTHER PERVASIVE DEVELOPMENTAL DISORDER : NEURODEVELOPMENTAL PATHOLOGY (자폐 장애 및 기타 전반적 발달장애 : 신경발달학적 병리 소견)

  • Cheon Keun-Ah;Jung Chul-Ho
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.16 no.2
    • /
    • pp.153-159
    • /
    • 2005
  • Autistic disorder and other PDD are currently viewed as a largely genetically determined neurodevelopmental disorder, although its underlying biological causes remain to be established. In this review, we examine the available neurodevelopmental literature on autistic disorder and discuss the findings that have emerged. Typical neuropathological observations are rather consistent with respect to the limbic system (increased cell packing density and smaller neuronal size), the cerebellum (decreased number of Purkinje cells) and the cerebral cortex ($>50\%$ of the cases showed features of cortical dysgenesis). However, most of the reported studies had to contend with the problem of small sample sizes, the use of quantification techniques, not free of bias and assumptions, and high percentages of autistic subjects with comorbid mental retardation or epilepsy. Furthermore, data from the limbic system and on age-related changes lack replication by independent groups. It is anticipated that future neuropathological studies held great promise, especially as new techniques such as design-based stereology and gene expression are increasingly implemented and combined, larger samples are analysed, and younger subjects free of comorbidities are investigated.

  • PDF

LC-MS/MS-based Quantification of Ten Neurotransmitters in Rat Limbic System and Serum: Application to Chronic Unpredictable Mild Stress-Induced Depression Rats

  • Mingyan Ma;Qiangxiang Chen;Wen Cao;Yubo Zhou;Aijuan Yan;Yanru Zhu
    • Mass Spectrometry Letters
    • /
    • v.14 no.3
    • /
    • pp.91-103
    • /
    • 2023
  • As one of the most common mood disorders, numerous studies have shown depression is the main risk factor for non-suicidal self-harm. The pathogenesis of depression is complex, and a comprehensive and rapid measurement of monoamine neurotransmitters and their metabolites will be very helpful in understanding the pathogenesis of depression. Therefore, a rapid and sensitive underivatized liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous monitoring of the levels of ten neurotransmitters and their metabolites in rat serum and limbic system and successfully applied to quantify the changes of neurotransmitter levels in chronic unpredictable mild stress-induced rats. The analytes studied were mainly involved in tyrosine metabolism, tryptophan metabolism, and glutamate cycling pathways, which are important in the pathogenesis of depression. It had been verified the method was sensitive and effective, with satisfactory linearity, and met the requirements of biological sample determination. Levels of neurotransmitters in rat serum, hippocampus, amygdala, prefrontal cortex, striatum, and hypothalamus were determined via the method. The results showed serotonin, dopamine, norepinephrine, and their metabolites were decreased, glutamine was increased, and glutamate was disturbed in chronic unpredictable mild stress-induced depression rats. This method provides a new approach to studying the pathogenesis of depression and other neurological disorders.