• Title/Summary/Keyword: Lignocellulosic biomass

Search Result 149, Processing Time 0.028 seconds

Enzymatic sccharification of lignocellulosic biomass by enzyme system of brown-rot fungi (갈색부후균의 효소시스템을 이용한 목질계 바이오매스의 효소당화)

  • Yoon, Jeong-Jun;Cha, Chang-Jun;Kim, Yeong-Suk;Kim, Young-Kyoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.529-532
    • /
    • 2006
  • Recently the production of ethanol from lignocecllulosics has received much attention due to immense potential for conversion of renewable biometerials into biofuels and chemicals. Fomitopsis palustris causes a typycal brown-rot and is unusual in that it rapidly depolymerize the cellulose in wood without removing the surrounding lignin that normally prevents microbial attack. This study demonstrated that the brown rot basidiomycete F. palustris was able to degrade crystalline cellulose. This fungus could also produce the three major cellulases (BGL, EXG and EG) when the cells were grown on 2.0% Avicel. The fungus was able to degrade both the crystalline and amorphous forms of cellulose from woody biomasses. Moreover, we found that this fungus has the processive EG like CBH which are able to degrade the crystalline region of cellulose. To establish the cellulase system in relation with degradation of woody biomass, we performed that purification, characterization and molecular cloning of a BGL, EGs and GLA from F. palustris grown on Avicel.

  • PDF

Itaconic and Fumaric Acid Production from Biomass Hydrolysates by Aspergillus Strains

  • Jimenez-Quero, A.;Pollet, E.;Zhao, M.;Marchioni, E.;Averous, L.;Phalip, V.
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.9
    • /
    • pp.1557-1565
    • /
    • 2016
  • Itaconic acid (IA) is a dicarboxylic acid included in the US Department of Energy's (DOE) 2004 list of the most promising chemical platforms derived from sugars. IA is produced industrially using liquid-state fermentation (LSF) by Aspergillus terreus with glucose as the carbon source. To utilize IA production in renewable resource-based biorefinery, the present study investigated the use of lignocellulosic biomass as a carbon source for LSF. We also investigated the production of fumaric acid (FA), which is also on the DOE's list. FA is a primary metabolite, whereas IA is a secondary metabolite and requires the enzyme cis-aconitate decarboxylase for its production. Two lignocellulosic biomasses (wheat bran and corn cobs) were tested for fungal fermentation. Liquid hydrolysates obtained after acid or enzymatic treatment were used in LSF. We show that each treatment resulted in different concentrations of sugars, metals, or inhibitors. Furthermore, different acid yields (IA and FA) were obtained depending on which of the four Aspergillus strains tested were employed. The maximum FA yield was obtained when A. terreus was used for LSF of corn cob hydrolysate (1.9% total glucose); whereas an IA yield of 0.14% was obtained by LSF of corn cob hydrolysates by A. oryzae.

Biotechnological improvement of lignocellulosic feedstock for enhanced biofuel productivity and processing

  • Ko, Jae-Heung;Kim, Hyun-Tae;Han, Kyung-Hwan
    • Plant Biotechnology Reports
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Secondary walls have recently drawn research interest as a primary source of sugars for liquid biofuel production. Secondary walls are composed of a complex mixture of the structural polymers cellulose, hemicellulose, and lignin. A matrix of hemicellulose and lignin surrounds the cellulose component of the plant's cell wall in order to protect the cell from enzymatic attacks. Such resistance, along with the variability seen in the proportions of the major components of the mixture, presents process design and operating challenges to the bioconversion of lignocellulosic biomass to fuel. Expanding bioenergy production to the commercial scale will require a significant improvement in the growth of feedstock as well as in its quality. Plant biotechnology offers an efficient means to create "targeted" changes in the chemical and physical properties of the resulting biomass through pathway-specific manipulation of metabolisms. The successful use of the genetic engineering approach largely depends on the development of two enabling tools: (1) the discovery of regulatory genes involved in key pathways that determine the quantity and quality of the biomass, and (2) utility promoters that can drive the expression of the introduced genes in a highly controlled manner spatially and/or temporally. In this review, we summarize the current understanding of the transcriptional regulatory network that controls secondary wall biosynthesis and discuss experimental approaches to developing-xylem-specific utility promoters.

Fungal Secretome for Biorefinery: Recent Advances in Proteomic Technology

  • Adav, Sunil S.;Sze, Siu Kwan
    • Mass Spectrometry Letters
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Fungal biotechnology has been well established in food and healthcare sector, and now being explored for lignocellulosic biorefinery due to their great potential to produce a wide array of extracellular enzymes for nutrient recycling. Due to global warming, environmental pollution, green house gases emission and depleting fossil fuel, fungal enzymes for lignocellulosic biomass refinery become a major focus for utilizing renewal bioresources. Proteomic technologies tender better biological understanding and exposition of cellular mechanism of cell or microbes under particular physiological condition and are very useful in characterizing fungal secretome. Hence, in addition to traditional colorimetric enzyme assay, mass-spectrometry-based quantification methods for profiling lignocellulolytic enzymes have gained increasing popularity over the past five years. Majority of these methods include two dimensional gel electrophoresis coupled to mass spectrometry, differential stable isotope labeling and label free quantitation. Therefore, in this review, we reviewed more commonly used different proteomic techniques for profiling fungal secretome with a major focus on two dimensional gel electrophoresis, liquid chromatography-based quantitative mass spectrometry for global protein identification and quantification. We also discussed weaknesses and strengths of these methodologies for comprehensive identification and quantification of extracellular proteome.

Dilute Acid Pretreatment for Conversion the Agricultural Residue into Bioenergy (농산부산물의 바이오에너지 전환을 위한 묽은산 전처리)

  • Won, Kyung-Yoen;Jeong, Tae-Su;Choi, Won-Il;Oh, Kyeong-Keun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.511-511
    • /
    • 2009
  • Lignocellulosic biomass is the most abundant organic material on earth and also promising raw material for bioenergy production. Agricultural residues in the process of bio-oil extraction, is an abundant and low-cost lignocellulosic material. The technology for conversion of lignocellulosic biomass resources to fuels and chemicals, such as ethanol, has been under development for decades. One of the well-studied technologies that are currently being commercialized is to use a dilute acid-catalyzed pretreatment followed by enzymatic hydrolysis and fermentation to produce ethanol. In this work, the dilute-acid hydrolysis of agricultural residues was optimized through the utilization of statistical experimental design. Evaluation criteria for optimization of the pretreatment conditions were based on high xylose recovery and low inhibitor contents in the hydrolyzates. The purpose of this study was to gain a more accurate understanding of the quantities of acid required for effective hydrolysis and the reactivity trade-offs with reaction time and temperature that will enable overall process optimization.

  • PDF

Wood pelletizing using pine root waste biomass - different pelletizing properties between trunk and root biomass of Pinus densiflora (소나무 뿌리 폐기물을 이용한 목질 펠릿 제조 - 목부와 뿌리로 제조한 펠릿의 특성 비교)

  • Shin, Soo-Jeong;Han, Gyu-Seong;Myeong, Soo-Jeong;Cho, Jung-Sik;Yeon, Ik-Jun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.71-73
    • /
    • 2008
  • Different biosolid fuel (wood pellet) properties between trunk and root of pine (Pinus densiflora) biomass were investigated. Trunk has more organic solvent extracts and Klason lignin content which has higher heating values than root biomass component. In root biomass, polysaccharides content was higher than trunk biomass. Based on Higher Heating Value (HHD) analysis and ash content, trunk biomass showed better solid fuel characteristics than root biomass. But pine root biomass had lower HHD than trunk biomass, its HHD values were higher than other hardwood or annual plant lignocellulosic biomass.

  • PDF

Pretreatment Characteristics of Ammonia Soaking Method for Cellulosic Biomass (암모니아 Soaking 방법을 이용한 섬유소계 바이오매스의 전처리 특성)

  • Park, Yong-Cheol;Kim, Jin-Woo;Kim, Jun-Seok
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.292-296
    • /
    • 2011
  • Liberation of fermentable sugars from lignocellulosic biomass is one of the key challenges in production of cellulosic ethanol. Aqueous ammonia cleaves ether and ester bonds in lignin carbohydrate complexes. It is an effective swelling reagent for lignocellulosic biomass. The aqueous ammonia pretreatment selectively reduces the lignin content of biomass. However, at high temperatures, this process solubilizes more than 50% of the hemicellulose in the biomass. Here we conducted a SAA(Soaking in Aqueous Ammonia) process by moderate reaction temperatures at atmospheric pressure using various lignocellulosicbiomass. The optimum condition of this process was 15 wt% of aqueous ammonia at 50 of reaction time during 72 hr. The delignification was up to 60% basis on initial biomass and the enzymatic digestibility was 60-90% for agricultural biomass, respectively.

Study on Utilization and Prospect of Lignocellulosic Bioethanol in ASEAN Countries (주요 ASEAN 국가의 목질계 바이오에탄올의 활용 및 전망에 관한 연구)

  • Heo, Su Jung;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.588-598
    • /
    • 2017
  • Currently, bioethanol, a fuel additive for transportation, is produced mainly by using biomass (first generation) such as corn and sugar canes. First generation biomass can cause various problems in terms of increase in agricultural prices and ethical reasons. To address these problems, a nonedible lignocellulosic biomass can be utilized. Agricultural byproducts such as straw, bagasse, and forest byproducts from the wood processing industry. Therefore, production of wood based bioethanol can be an effective utilization route of second generation biomass, and its raw materials are more abundant than first generation resources. Furthermore, it is possible to secure cheap raw materials. One of the biggest advantages of using biofuels is that it contributes to the reduction of greenhouse gases by minimizing the environmental impact, unlike fossil fuels. In this study, we investigated the greenhouse gas reduction effects that can be achieved through the use of Lignocellulosic bioethanol and government policies on renewable energy currently being implemented in ASEAN countries (Indonesia, Malaysia, Thailand and the Philippines). In these four countries, policies and incentives related to biofuels have been developed. It is expected that the reduction ratio of carbon dioxide emission and the mixed biofuel will be gradually increased in the future.