• Title/Summary/Keyword: Lignin utilization

Search Result 81, Processing Time 0.027 seconds

Upcycling the Spent Mushroom Substrate of the Grey Oyster Mushroom Pleurotus pulmonarius as a Source of Lignocellulolytic Enzymes for Palm Oil Mill Effluent Hydrolysis

  • Yunan, Nurul Anisa Mat;Shin, Tan Yee;Sabaratnam, Vikineswary
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.6
    • /
    • pp.823-832
    • /
    • 2021
  • Mushroom cultivation along with the palm oil industry in Malaysia have contributed to large volumes of accumulated lignocellulosic residues that cause serious environmental pollution when these agroresidues are burned. In this study, we illustrated the utilization of lignocellulolytic enzymes from the spent mushroom substrate of Pleurotus pulmonarius for the hydrolysis of palm oil mill effluent (POME). The hydrolysate was used for the production of biohydrogen gas and enzyme assays were carried out to determine the productivities/activities of lignin peroxidase, laccase, xylanase, endoglucanase and β-glucosidase in spent mushroom substrate. Further, the enzyme cocktails were concentrated for the hydrolysis of POME. Central composite design of response surface methodology was performed to examine the effects of enzyme loading, incubation time and pH on the reducing sugar yield. Productivities of the enzymes for xylanase, laccase, endoglucanase, lignin peroxidase and β-glucosidase were 2.3, 4.1, 14.6, 214.1, and 915.4 U g-1, respectively. A maximum of 3.75 g/lof reducing sugar was obtained under optimized conditions of 15 h incubation time with 10% enzyme loading (v/v) at a pH of 4.8, which was consistent with the predicted reducing sugar concentration (3.76 g/l). The biohydrogen cumulative volume (302.78 ml H2.L-1 POME) and 83.52% biohydrogen gas were recorded using batch fermentation which indicated that the enzymes of spent mushroom substrate can be utilized for hydrolysis of POME.

Chemical Properties of Major Tree Barks in Korea -(I) Chemical Composition of Reducing Sugars and Five Essential Elements- (한국산(韓國産) 주요(主要) 수종(樹種) 수피(樹皮)의 화학적(化學的) 성질(性質) -(I) 일반분석(一般分析), 환원당구성(構成), 무기원소(無機元素)-)

  • Lee, Hwa Hyoung
    • Journal of Korean Society of Forest Science
    • /
    • v.40 no.1
    • /
    • pp.63-69
    • /
    • 1978
  • A bark comprises about 10 to 20 percents of a typical log by volume, and is generally considered as an unwanted residue rather than a potential1y valuable resourses, As the world has been confronted with decreasing forest resources, natural resources pressure dictate that a bark should be a raw material instead of a waste. The utilization of the largely wasted bark of genus Pinus, Quercus, and Populus grown in Korea can be enhanced by learning their chemical properties. However, the chemical study of tree bark grown in korea have never been undertaken. In the present paper, the studies on the chemical properties of bark comprise carbohydrates, lignin, and extractives, composition of reducing sugars and five essential elements. The results may be summarized as follows: 1. Bark are much richer in quantity of lignin and extractives than the corresponding wood, and are chiefly consisted of lignin, extractives and carbohydrates orderly. It is the same with ash contents. Alcohol-benzene extractives of populus bark are the highest among three genus. 2. Although glucose constitutes the major sugar in both pine and hardwoods bark, in pinus, arabinose and xylose are the next but in hard woods, the next is xylose. 3. Essential elements, Ca and Kjeldahl-N are higher in the bark than in the wood. Ca content is the highest among others, and N,K followed it. Essential elements are higher in Quercus than in Populus and pinus.

  • PDF

A Comparison of Sward Types on the Intake and Nutrients Utilization of Herbage by Korean Native Goats (산양에 의한 초지유형별 목초의 섭취량 및 영양가치 이용성 비교)

  • 이형석;이인덕
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.15 no.4
    • /
    • pp.297-302
    • /
    • 1995
  • The objective of this experiment was to compare the dry matter intake, nutrients digestibility, nitrogen and energy utilization of hehage among the orchardgrass(OG) pure, orchardgrass(OG)-red clover(RC) mixture and complex rnixtures(C. mix) by Korean native goat. The results obtained were surnmerized as follows: 1. Crude protein(CP) content was higher in OG-RC and C. Mix diets than in OG pure diets(P<0.05). NDF content was higher in OG pure diets than other diets(P<0.05). But ADF, Lignin contents and gross energy did not differ among all diets. 2. Dry matter intake by Korean native goat tend to be high in OG-RC diets, and low in OG pure diets. But there was no significant difference statistically. Dry matter and cellular constituents digestibilities were higher for OG-RC and C. Mix diets than OG pure diet, but CP and NDF digestibilities were no significant difference among diets. 3. The amount of nitrogen consumed amount by Korean native goat in the OG-RC diet was higher than other diets. But, due to largely relative urinary and fecal nitrogen loss, Apparrently digested nitrogen and retained nitrogen percents were not significant difference among diets. 4. The amount of energy consumed by Korean native goat in OG-RC diet was higher than other diets. But, due to largely relative urinary and fecal energy loss, digestable energy percent was lower than C. Mix diets. But.metabolic energy percent was no significant difference among diets. Therefore, there was no significant differences among sward types for the utilization of nitrogen and energy by Korean native goats.

  • PDF

The Material Properties of Coniferous Barks (침엽수재(針葉樹材) 수피(樹皮)의 물성(物性))

  • Cheong, Tae Seong;Min, Du Sik;Kim, Byoung Ro
    • Journal of Korean Society of Forest Science
    • /
    • v.71 no.1
    • /
    • pp.59-65
    • /
    • 1985
  • In this study, the vegetation of Pinus densiflora S. et Z., Pinus regida Miller, Pinus koraiensis S. et Z., and Larix kaempferi Satgent (major conifers) stands planted in the Chungcheong-province was investigated to obtain the fundamental informations for the improvement of coniferous barks utilization. The results may be summarized as follows; 1) Barks are much richer in quantity of extractives and lignin than the corresponding wood. Alcohol-benzene extractives of Pinus koraiensis barks are the highest among others. Pentosan contents are lower in the bark than in the wood, but pentosan contents of the Larix kaempferi bark is the highest among others. 2) Barks are acid in nature, and PH values of barks varying from 3.5 to 4.1 are lower than that of wood. The ash contents of barks are greater than the corresponding wood. 3) A bark comprises from 13.9 to 19.8 percents of a typical log by volume. The calorific values are higher in the barks than in the wood, and calorific values of Pinus koraiensis barks are the highest among others.

  • PDF

Potential of Using Maize Cobs in Pig Diets - A Review

  • Kanengoni, A.T.;Chimonyo, M.;Ndimba, B.K.;Dzama, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.12
    • /
    • pp.1669-1679
    • /
    • 2015
  • The quest to broaden the narrow range of feed ingredients available to pig producers has prompted research on the use of low cost, unconventional feedstuffs, which are typically fibrous and abundant. Maize cobs, a by-product of a major cereal grown worldwide, have potential to be used as a pig feed ingredient. Presently, maize cobs are either dumped or burnt for fuel. The major challenge in using maize cobs in pig diets is their lignocellulosic nature (45% to 55% cellulose, 25% to 35% hemicellulose, and 20% to 30% lignin) which is resistant to pigs' digestive enzymes. The high fiber in maize cobs (930 g neutral detergent fiber/kg dry matter [DM]; 573 g acid detergent fiber/kg DM) increases rate of passage and sequestration of nutrients in the fiber reducing their digestion. However, grinding, heating and fermentation can modify the structure of the fibrous components in the maize cobs and improve their utilization. Pigs can also extract up to 25% of energy maintenance requirements from fermentation products. In addition, dietary fiber improves pig intestinal health by promoting the growth of lactic acid bacteria, which suppress proliferation of pathogenic bacteria in the intestines. This paper reviews maize cob composition and the effect on digestibility of nutrients, intestinal microflora and growth performance and proposes the use of ensiling using exogenous enzymes to enhance utilization in diets of pigs.

Mechanical Properties of Wood Flour-Polypropylene Composites: Effects of Wood Species, Filler Particle Size and Coupling Agent (목분-폴리프로필렌 복합재의 기계적 특성: 목재수종, 충진제 입자크기 및 상용화제의 영향)

  • Kang, In-Aeh;Lee, Sun-Young;Doh, Geum-Hyun;Chun, Sang-Jin;Yoon, Seung-Lak
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.505-516
    • /
    • 2009
  • The effects of wood species, particle size of wood flours and coupling treatment on the mechanical properties of wood plastic composites (WPC) are investigated in this study. Chemical components of wood flour from 3 different wood species were analyzed by the chemical analysis. Wood flours of 40~60 mesh and 80~100 mesh were manufactured from Larix (Larix kaempferi Lamb.), Quercus (Quercus accutisima Carr.), and Maackia (Maackia amuresis Rupr. et Maxim). The wood flours were reinforced into polypropylene (PP) by melt compounding and injection molding, then tensile, flexural, and impact strength properties were analyzed. The order of alpha-cellulose content in wood is Quercus (43.6%), Maackia (41.3%) and Larix (36.2%). The order of lignin content in wood is Larix (31.6%), Maackia (24.7%), and Quercus accutisima (24.4%). The content of extractives in wood is in the order of Larix (8.5%), Maackia (4.4%), and Quercus accutisima (3.9%). As the content of alpha-cellulose increases and the lignin and extractives decreases, tensile and flexural strengths of the WPC increase. At the same loading level of wood flours, the smaller particle size (80~100 mesh) of wood flours showed highly improved tensile and flexural strengths, compared to the larger one (40~60 mesh). The impact strength of the WPC was not significantly affected by the wood species, but the wood flours of larger particle size showed better impact strengths. The addition of maleated polypropylene (MAPP) provided the highly improved tensile, flexural and impact strengths. Morphological analysis shows improved interfacial bonding with MAPP treatment for the composites.

Effects of Pre-treatments on the Oil Palm EFB Fibers (오일팜 EFB 섬유의 전처리 영향 평가)

  • Kim, Dong-Seop;Sung, Yong Joo;Kim, Chul-Hwan;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.6
    • /
    • pp.36-42
    • /
    • 2012
  • The empty fruit bunch fibers(EFB) of oil palm were examined for optimal utilization of the EFB fibers. The EFB fibers were obtained by shredding EFB, followe by removal of fines. The surface properties of the fibers were modified with various pre-treatments, such as hot water extraction, the soaking treatments with NaOH, $ClO_2$ and n-hexane. The changes in the fiber surface were examined with FT-IR method, which showed the changes in chemical compositions such as pectin, lignin, and etc. according to the pre-treatment methods. And the z-directional tensile testing of the fiber mold made of the treated EFB fibers showed the changes in the bonding strength by the pre-treatments. The fiber mold made of EFB fibers treated with $ClO_2$ showed the greater increase in the tensile energy absorption although the NaOH treatment resulted in the severer impact on the EFB fibers.

Uitlization of Ligno-cellulosic Biomass(I) - Manufacture of Explosion Apparatus and Composition of Explode Wood - (목질계(木質系) Biomass의 이용(利用)(I) - 폭쇄장치(爆碎裝置)의 제작(製作) 및 폭쇄재(爆碎材)의 조성(組成) -)

  • Lee, Jong-Yoon;Park, Sang-Jin;Lee, Seok-Gun;Cho, Nam-Seok;Chang, Jun-Pok;Ann, Byung-Jo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.65-73
    • /
    • 1989
  • Steam explosion process is an efficient pretreatment method for sparating and utilizing wood main components has attracted attention in utilization of ligno-cellulosic biomass. In order to obtain the effective pretreatment condition. this study was made explosion apparatus. examined the composition. extraction of exploded wood. Wood chips of pine(Pinus densiflora oak (Quercus serrata) and birch wood (Belula platyphylla var. japonica) were treated with a high pressure steam(20-30 kg/$cm^2$, 2-6 minutes). The results can be summarized as follow; In analysis of exploded wood(EXW). It was found arabinose residues rapidly decreased with increasing of steaming time and pressure. Extractives of EXW with sodium hydroxide increased with increasing of steaming-time and- pressure especially extractives 1% sodium hydroxide has higher than other extracted method extractives of hard wood(oak, birch) has higher than pine wood. In EXW extracted with sodium hydroxide and methanol lignin was partially delignified alkali extraction was more delignified than methanol extraction hardwood than pine wood.

  • PDF

Evaluation of Characteristics of Sasa quelpaertensis Nakai Stem for the Comprehensive Utilization (조릿대의 종합적 활용을 위한 조릿대 섬유 특성 평가)

  • Sung, Yong Joo;Kim, Dong Sung;Lee, Ji-Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.5
    • /
    • pp.1-7
    • /
    • 2012
  • Chemical composition, morphological properties and papermaking properties of Sasa quelpaertensis Nakai were investigated in order to use it comprehensively. The lignin contents of stalks and leaves were 18.8% and 15.3% and the holocellulose contents were 63.3% and 48.6% respectively. The contents of ash and the amount of water extract showed the higher value than those of wood or other bamboo species. The average fibers length and width of Sasa quelpaertensis Nakai were 780 ${\mu}m$ and 14.8 ${\mu}m$. The fibers of Sasa quelpaertensis Nakai stalk had thinner width and more slender structure than those of softwood. The handsheet made of Sasa quelpaertensis Nakai alkaline pulp showed higher in tensile strength and bulkier structure than those of handsheet made of soft wood unbleached kraft pulp.

Trends in Agricultural Waste Utilizatili-zation

  • Han, Youn-Woo
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1979.04a
    • /
    • pp.113.1-113
    • /
    • 1979
  • Each year, vast amount of agricultural crop residues are produced (about 60 percent of the total crop production), which have not been effectively utilized because they are bulky and lignocellulosic, thus having little fuel energy per unit volume. Using treated plant residues as animal feeds could result in an ultimate saving of fossil fuel energy and a more effective utilizat ion of products created by the photosynthetic process. Feeding the residues to animals would decrease the pollution potential, but these residues are difficult for even a ruminant animal to digest. If cellulosic wastes produced from cereal grain straw and wood could be digested, land now used for producing forage add grain cnuld be shifted to food crops for humans. During the past decade, considerable efforts were made to utilize crop residues. These utilization methods can be broadly grouped into for categories: (1) direct uses, (2) mechanical conversions, (3) chemical conversions and (4) biological conversions. Agricultural crop residues consist mainly of cellulose, hemicellulose, lignin, pectin, andother plant carbohydrates. The nature of the constituents of these residues can be best utilized as one of the five FS: Fuel, Fiber, Fertilizer, Feed and Food. Many processes have teen proposed and some are in industrial production stage. However, economics of the process depend on the location where availability of other competitive products are different.

  • PDF