• 제목/요약/키워드: Lignin degradation

검색결과 160건 처리시간 0.026초

Studies on the Ligninolytic Enzyme Activities During Biological Bleaching of Kraft Pulp with Newly Isolated Lignin-Degrading Fungi

  • Lee, Seon-Ho
    • 펄프종이기술
    • /
    • 제31권2호
    • /
    • pp.8-14
    • /
    • 1999
  • A screening has been performed to find hyper-ligninolytic fungi, which degtrade beech and pine lignin extensively in order to broaden the understanding of the ligninolytic enzymes elaborated by various white-rot fungi. One hundred and twenty two ligninolytic strains were selected from decayed woods with a selective medium for screening ligninolytic wood-rotting fungi. Two of them, Phanerochaete sordida YK-624 and YK-472, showed much higher ligninolytic activity and selectivity in beech-wood degradation than typical lignin-degrading fungi, phanerochaete chrysosporium and Coriolus versicolor. They also degraded birch dioxane lignin and residual lignin in unbleached kraft pulp(UKP) much more extensively than P. chrysosporium and C. versicolor. During fungal treatment of beech wood-powder, the fungus strain P. sordida YK-624 showed higher activity of extracellular manganese peroxidase (MnP) in the medium than P. chrysosporium. It also showed MnP activity, which would not be lignin peroxidast during treatment of oxygen-bleached kraft pulp(OKP) and under enzyme-inducing conditin.

  • PDF

Degradation of Lignin and Cellulose Model Compounds by Chlorine Dioxide

  • Yoon, Byung-Ho;Lee, Seon-Ho;Wang, Li-Jun
    • 펄프종이기술
    • /
    • 제31권2호
    • /
    • pp.1-7
    • /
    • 1999
  • In this paper, five lignin model compounds (vanilly alcohol, veratryl alcohol, veratryl methyl carbinol, biseugenol) and three cellulose model compounds (${\alpha}$-D-glucos, methyl-${\beta}$-D-glucopyra-noside, D-cellobiose) were used to study the degradation rates of lignin and cellulose with chlorine dioxide. Biseugenol, which has unsaturated structure on the side chain of aromatic ring, was found to react with chlorine dioxide very quickly and consume large amount of chlorine dioxide. Phenolic structures, represented by veratryl alcohol and apocynol, react with chlorine dioxide much faster than nonphenolic structures represented by veratryl alcohol and veratryl methyl carbinol. The degradations of cellulose models were generally very slight, the corder of reaction rate being ${\alpha}$-D-glucose > D-cellobiose > methyl-${\alpha}$-D-glucopyranoside.

  • PDF

구름버섯에서 리그닌 분해효소 유전자들의 클로닝 (Partial Cloning of Genes for Lignin Degrading Enzymes in Trametes versicolor)

  • 김용호;정수진;김선경;송홍규;최형태
    • 미생물학회지
    • /
    • 제39권3호
    • /
    • pp.201-205
    • /
    • 2003
  • 리그닌 분해에 관련된 효소 중 laccase는 구리 결합부위가, lignin peroxidase와 manganese peroxidase는 헴(heme) 결합부위의 아미노산 서열이 잘 보존된 단백질들이다. 국내에서 분리한 구름버섯(Trametes versicolor)을 대상으로 관련 유전자들의 보존된 지역의 염기서열을 근거로 중합연쇄반응(PCR)에 필요한 primer를 제작하였고, 이를 사용하여 해당 유전자의 조각을 확보하였다. 이를 pGEM-T vector에 cloning하고 그 염기서열을 분석한 결과 약 1.3 kb의 laccase조각은 다른 백색부후균의 laccase와 65~97%의 상동성을 보였다. 또한 185 bp의 lignin peroxidase 조각과 443 bp의 manganese peroxidase조각을 타 백색부후균의 효소들과 비교한 결과 각각 80~95% 및 61~83%의 상동성을 보였다.

Effect of Superoxide Dismutase and Low Molecular Mediators on Lignin Degradation

  • Leonowicz, Andrzej;Matuszewska, Anna;Luterek, Jolanta;Ziegenhagen, Dirk;Wojtas-Wasilewska, Maria;Hofrichter, Martin;Rogalski, Jerzy;Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • 제27권4호
    • /
    • pp.1-14
    • /
    • 1999
  • As the biodegradation of wood constituents has been understood as a multi-basidiomycetes and enzymatic processes, this review will focus on the roles of low molecular compounds and radicals working in harmony with fungal enzymes. Wood rotting basidiomycete fungi penetrate wood, and lead to more easily metabolize carbohydrates of the wood complex. The white-rot fungi, having versatile enzymes, are able to attack directly the "lignin barrier". They also use a multi-enzyme system including so-called "feedback" type enzymes allowing for simultaneous degradation of lignin and carbohydrates. The multi-enzymes including laccase support the proposed route by explaining how the high molecular weight enzymes can function in the wood complex. These enzymes may function separately or cooperate each other. In addition, veratryl alcohol oxidase, cellobiose dehydrogenase, arylalcohol dehydrogenase, and particularly low molecular mediators and radicals have an important role in wood biodegradation. However, the possibility of other mechanism as well as other enzymes, as operating as feedback systems in the process of wood degradation, could not be excluded.

  • PDF

Conversion Characteristics of Chemical Constituents in Liriodendron tulipifera and Their Influences on Biomass Recalcitrance during Acid-Catalyzed Organosolv Pretreatment

  • Ki-Seob GWAK;JunHo SHIN;Chae-Hwi YOON;In-Gyu CHOI
    • Journal of the Korean Wood Science and Technology
    • /
    • 제52권2호
    • /
    • pp.101-117
    • /
    • 2024
  • The conversion characteristics of the major components of Liriodendron tulipifera were investigated during acid-catalyzed organosolv pretreatment. Glucan in L. tulipifera was slowly hydrolyzed, whereas xylan was rapidly hydrolyzed. Simultaneous hydrolysis and degradation of xylan and lignin occurred; however, after complete hydrolysis of xylan at higher temperatures, lignin remained and was not completely degraded or solubilized. These conversion characteristics influence the structural properties of glucan in L. tulipifera. Critical hydrolysis of the crystalline regions in glucan occurred along with rapid hydrolysis of the amorphous regions in xylan and lignin. Breakdown of internal lignin and xylan bonds, along with solubilization of lignin, causes destruction of the lignin-carbohydrate complex. Over a temperature of 160℃, the lignin that remained was coalesced, migrated, and re-deposited on the surface of pretreated solid residue, resulting in a drastic increase in the number and content of lignin droplets. From the results, the characteristic conversions of each constituent and the changes in the structural properties in L. tulipifera effectively improved enzymatic hydrolysis in the range of 140℃-150℃. Therefore, it can be concluded that significant changes in the biomass recalcitrance of L. tulipifera occurred during organosolv pretreatment.

초임계수에 의한 현사시 목분의 분해특성 및 분해산물 분석 (Characterization of Degradation features and Degradative Products of Poplar Wood(Populus alba${\times}$glandulosa) by Flow Type-Supercritical Water Treatment)

  • 최준원;임현진;한규성;강하영;최돈하
    • 임산에너지
    • /
    • 제24권1호
    • /
    • pp.39-46
    • /
    • 2005
  • 본 연구에서는 연속형 초임계수 분해장치를 이용하여 처리온도 별로 현사시목재의 당화 가능성과 현사시목재 각 성분의 분해특성을 분석하였다. 미세하게 분쇄한 현사시목분을 물의 초임계압력(23MPa) 조건하에서 각각 아임계온도$(275^{\circ}C,\;325^{\circ}C)$와 초임계온도$(375^{\circ}C,\;415^{\circ}C)$에서 각각 2분간 처리하였다. 갈색을 띤 현사시목분의 액상분해산물에는 어느 정도의 미분해 고형분이 포함되어 있었다. 초임계수 분해온도가 높을수록 현사시목분의 분해율은 증가하여 초임계조건인 $375^{\circ}C$에서는 현사시목분의 $94\%$까지 분해되었다. 각 처리조건에서 생성된 환원당량을 DNS법으로 측정한 결과, 처리온도가 상승함에 따라 생성된 환원당량은 점차 감소하는 경향을 나타내었다. 이는 반응 초기에 생성된 환원당들이 높은 온도의 반응기를 통과하면서 열분해와 유사한 화학적 반응에 의해 더욱 분해되어 퓨란계 화합물로 전환된 것으로 예측되었다. 리그닌의 분해특성을 살펴보기 위하여 액상의 분해산물을 ethylacetate로 추출하여 유기용매 가용부를 GC-MS로 분석하였다. 리그닌의 분해산물은 대부분 페놀성 유도체인 vanillin, guaiacol, syringaldehyde, 4-prophenyl syringol과 dihydrosinapyl alcohol등으로 확인되었으며, 이들의 농도는 처리온도가 상승함에 따라 증가하는 것으로 나타났다. 이러한 리그닌 분해산물은 리그닌고분자의 주요 결합인 에테르 결합이 높은 온도조건하에서 분해에 의한 것으로 예측되었다.

  • PDF

Bacillus subtilis DO4에 의한 볏짚의 CMC, Xylan 및 Lignin 성분의 분해양상에 관하여 (Degradation Pattern of CMC, Xylan, Lignin Components of Rice Straw by Bacillus subtilis DO4)

  • 최영태;김규중
    • 미생물학회지
    • /
    • 제22권2호
    • /
    • pp.97-101
    • /
    • 1984
  • To investigate the biodegradation pattern of rice straw, mainly composed of cellulose, hemicellulose and lignin components, by the isolate stran Bacillus subtilis $DO_4$, the change of cell population was observed on CMC (carboxymethyl cellulose), larch wood xylan and lignosulfonate as a carbon source respectively. Also, the transition pattern of enzyme activities of cellulase and xylanase and lignin contents was measured on rice straw and mixed substrate according to growth. The results in these experiments revealed that xylanase activity was first appeared and cellulase activity in the next, while lignin component was almost not changed through the culture period.

  • PDF

Degradation of Polycyclic Aromatic Hydrocarbons by Selected White-rot Fungi and the Influence of Lignin Peroxidase

  • Kim, Mi-Sun;Huh, Eun-Jee;Kim, Hyun-Kyung;Moon, Kwang-Woong
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권2호
    • /
    • pp.129-133
    • /
    • 1998
  • The white-rot fungi Phanerochaete chrysosporium ATCC 24725, Pleurotus ostreatus ATCC 32783, Lentinus edodes ATCC 24462, and Trametes versicolor ATCC 42530 were studied for their ability to degrade lignin, phenanthrene, and anthracene. Lignin in rice-straw was degraded by 14.4, 28.73, and 33.88% by P. chrysosporium, T. versicolor, and P. ostreatus, respectively. Approximately 12% and 83% of phenanthrene was degraded in 1 and 5 days, respectively, when the pre-grown mycelIium matrix of P. ostreatus. was incubated with 10 ppm of phenanthrene in modified Kirk's medium (nitrogen limited) at $25^{\circ}C$. Approximately 2%> and 61% of phenanthrene was degraded when the phenanthrene concentration was increased to 30 ppm. Similar trends were observed with phenanthrene using P. chrysosporium. Mycelial growth of T. versicolor was less inhibited at 30 ppm phenanthrene than for P. ostreatus and P. chrysosporium. Better degradation of phenanthrene by T. versicolor may be attributed to better mycelium growth. One hundred percent of 15 ppm anthracene was degraded in 10 days by both P. chrysosporium and T. versicolor. 40 ppm anthracene inhibited the mycelial growth of P. chrysosporium. lignin peroxidase activity, which was previously reported to be involved in initial phenanthrene oxidation, was also detected from the culture broth of the strains tested. The rates of lignin peroxidase production in the cultures were not consistent with the rate of PAH hydrolysis during incubation.

  • PDF

BMP법에 의한 리그닌의 혐기성 분해 및 GC와 GC/MS을 이용한 리그닌 분해산물 측정 (Anaerobic Biodegradation of Lignin by BMP Test and Measurement of Lignin-derived Compound Using GC & GC/MS)

  • 김석구
    • 유기물자원화
    • /
    • 제16권3호
    • /
    • pp.46-51
    • /
    • 2008
  • 리그닌이 분해되려면 분자형태의 산소를 요구하므로 혐기성 조건에서는 리그닌 분해가 어려운 것으로 알려져 왔다. 리그닌의 존재는 리그닌 분해에 영향을 준다. 리그닌 분해의 초기단계에서는 촉매역할을 하는 효소에 의해 리그닌이 중간산물로 분해되어 이 단계에서는 미생물에 의한 효소생성이 제한인자로 작용하게 된다. 폐수에 영양염을 첨가하고 미생물을 식종하여 폐수 내 유기물의 혐기성 분해정도를 평가할 수 있는 BMP(biochemical methane potential)법이 혐기성 조건하에서 리그닌 분해를 평가하기 위해 이용되고 있다. BMP법에 의해 리그닌을 초기 분해한 후 미생물 활동을 선택적으로 억제할 수 있도록 3% 톨루엔 용액으로 만든다. 이 용액의 리그닌 초기 분해율과 리그닌 분해산물의 축적률을 측정해 리그린의 혐기성 분해특성을 파악할 수 있다.

  • PDF

과망간산칼륨을 이용한 KP의 새로운 표백법(제3보) -모델화합물 실험에서 Oxalic acid 첨가의 평가- (New Bleaching Method for KP with Permanganate(III) -Evaluation of Role of Oxalic Acid as a Acid Catalyst and a Reductant on the Permanganate Oxidation with Phenolic Model Compounds-)

  • ;윤승락
    • 펄프종이기술
    • /
    • 제33권1호
    • /
    • pp.73-79
    • /
    • 2001
  • Stricter environmental demands have increased the need to replace conventional C/D bleaching sequence by chlorine-free sequence. Permanganate is well known as a powerful oxidant and have been used industrially in variable fields. However, it has considered to be difficult to use permanganate as a bleaching reagent because of its strong oxidative effect decreasing the viscosity of pulps extremely. We have tried to use permanganate as a bleaching reagent for KP under the mild condition and it was clear that pernanganate oxidized lignin remained in pulps selectively and increased pulp brightness decreasing K number of pulps with small degradation of cellulose. We have employed the neutral condition in the permanganate bleaching process in this study. In this case, permanganate was converted to manganese dioxide after bleaching reaction. The manganese dioxide is remained in the treated pulp fibers because of its insolublity in water. So it was required to reduction the manganese oxide to manganese ion by using reductants with acid. In this paper, we proposed to use oxalic acid as a reducing reagent converting manganese oxide to manganese ion after bleaching reaction. Oxalic acid plays the role as a reductant and a acid, so post-treatment after bleaching became to be easy by using oxalic acid. On the study using lignin model compounds, it was clear that permaganate react with phenols firstly, after that oxalic acid reduce the manganese oxide to manganese ion in the mixture of permanganate, phenols and oxalic acid. Several lignin model compounds ($\textit{p}$-hydroxybenzaldehyde, vanillin, syringaldehyde, veratraldehyde) are selected to elucidate the effect of substituents on reaction rate and its mechanism with permanganate including oxalic acid in this study. Except for veratraldehyde, the rate of oxidative degradation of phenolic compounds by permanganate with oxalic acid are higher than neutral condition. Especially, the degradation rate of $\textit{p}$-hydroxybenzaldehyde are strongly dependent on pH of reaction mixture. On the other hand, the degradation rate of veratraldehyde are decreased with decreasing pH and main degradation product is veratric acid. This result indicate that pH of bleaching liquor should be kept over 2 to degrade of non-phenolic lignin in the pulps effectively in permanganate bleaching.

  • PDF