• Title/Summary/Keyword: Lightweight steel panel

Search Result 22, Processing Time 0.03 seconds

Material Properties Degradation of Composite Body Panel Exposed to High Temperature (복합재료 Body Panel의 고온열화 특성)

  • Pyun, Hyun-Joong;Nam, Hyun-Wook;Han, Kyung-Seop
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.219-224
    • /
    • 2000
  • A research for development of composite body panel is in progress for lightening tare. Low specific weight LPMC (Low pressure molding compound) has advantages such as lightweight and resistance to dent and corrosion. In this study, tensile, bending and impact tests for the LPMC and SPRC35 (High tension steel plate) were carried out and compared. Although mechanical properties of SPRC35 are better than the LPMC, the LPMC satisfies basic requirements for car body panel. The high temperature exposed LPMC were degraded due to fiber-matrix debonding and deterioration of resin.

  • PDF

Mechanical behavior test and analysis of HEH sandwich external wall panel

  • Wu, Xiangguo;Zhang, Xuesen;Tao, Xiaokun;Yang, Ming;Yu, Qun;Qiu, Faqiang
    • Advances in concrete construction
    • /
    • v.13 no.2
    • /
    • pp.153-162
    • /
    • 2022
  • Prefabricated exterior wall panel is the main non-load-bearing component of assembly building, which affects the comprehensive performance of thermal insulation and durability of the building. It is of great significance to develop new prefabricated exterior wall panel with durable and lightweight characteristics for the development of energy-saving and assembly building. In the prefabricated sandwich insulation hanging wall panel, the selection of material for the outer layer and the arrangement of the connector of the inner and outer wall layers affect the mechanical performance and durability of the wall panels. In this paper, high performance cement-based composites (HPFRC) are used in the outer layer of the new type wall panel. FRP bars are used as the interface connector. Through experiments and analysis, the influence of the arrangement of connectors on the mechanical behaviors of thin-walled composite wall panel and the panel with window openings under two working conditions are investigated. The failure modes and the role of connectors of thin-walled composite wallboard are analyzed. The influence of the thickness of the wall layer and their combination on the strain growth of the control section, the initial crack resistance, the ultimate bearing capacity and the deformation of the wall panels are analyzed. The research work provides a technical reference for the engineering design of the light-weight thin-walled and durable composite sandwich wall panel.

Numerical simulation of hollow steel profiles for lightweight concrete sandwich panels

  • Brunesi, E.;Nascimbene, R.;Deyanova, M.;Pagani, C.;Zambelli, S.
    • Computers and Concrete
    • /
    • v.15 no.6
    • /
    • pp.951-972
    • /
    • 2015
  • The focus of the present study is to investigate both local and global behaviour of a precast concrete sandwich panel. The selected prototype consists of two reinforced concrete layers coupled by a system of cold-drawn steel profiles and one intermediate layer of insulating material. High-definition nonlinear finite element (FE) models, based on 3D brick and 2D interface elements, are used to assess the capacity of this technology under shear, tension and compression. Geometrical nonlinearities are accounted via large displacement-large strain formulation, whilst material nonlinearities are included, in the series of simulations, by means of Von Mises yielding criterion for steel elements and a classical total strain crack model for concrete; a bond-slip constitutive law is additionally adopted to reproduce steel profile-concrete layer interaction. First, constitutive models are calibrated on the basis of preliminary pull and pull-out tests for steel and concrete, respectively. Geometrically and materially nonlinear FE simulations are performed, in compliance with experimental tests, to validate the proposed modeling approach and characterize shear, compressive and tensile response of this system, in terms of global capacity curves and local stress/strain distributions. Based on these experimental and numerical data, the structural performance is then quantified under various loading conditions, aimed to reproduce the behaviour of this solution during production, transport, construction and service conditions.

Design and Analysis of vehicle Hood using Magnesium Alloy Sheets (마그네슘 합금 판재를 이용한 차량용 후드의 설계 및 해석)

  • Shin H. W.;Yoo H. J.;Yeo D. H.;Shin K. Y.;Koh Y. S.;Choi S. W.;Lee S. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.220-226
    • /
    • 2005
  • To achieve the weight reduction of a vehicle, Magnesium alloys are widely used in automobile parts because of its lightweight characteristics. Magnesium alloys also have advantages in recycling, stiffness, NVH , heat protection. But Magnesium alloy parts are mainly manufactured by diecasting processes, their productivity was not so high compared to by sheet metal working. We are developing vehicle hood using magnesium sheets. In this study we designed magnesium alloy hood which have equivalent mechanical characteristics to steel hood. Using finite element method we decided thickness of magnesium sheets under some design requirements and we changed the shape of hood inner panel and hinge reinforcements. Outer and inner panel thickness was 1.3mm, 1.5mm respectively. Panel dentibility analysis was performed to conform the new magnesium design by nonlinear FEM package. Formability and hemming of Magnesium sheets are the subjects for further study because they have poor stretchability compared to steel sheets.

  • PDF

A Study on the Performance Experiments of Lightweight Wall of Long-life Housing by Ceiling Infill System (천장 인필시스템에 따른 장수명주택 경량벽체의 성능실험에 관한 연구)

  • Seo, Dong-Goo;Lee, Jong-Ho;Kim, Eun-Young;Hwang, Eun-Kyoung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.247-248
    • /
    • 2018
  • In order to secure the variability of long-life housing, dry walls are used. The composite gypsum board panel is the most frequently used infill system for the wall, and it is an excellent construction method in terms of constructability and economic feasibility. However, there are also problems such as the destruction of Ondol pipes at the bottom floor and being unable to fix the light weight steel frame (M-bar) when a variable composite gypsum board panel is used. To solve such problems, a wall with a method of fixing only the top part without fixing the bottom floor is developed, but it is difficult to identify the durability of ceiling frame according to the tensile force of stud and the safety according to the Stiffness and impact resistance (soft body) of ceiling frame. Therefore, this study verified the effectiveness of infill system for the wall by conducting experiment on the stiffness and impact resistance of composite gypsum board panel according to the reinforcement of ceiling frame (wooden frame, double saw-toothed bracket, Cross M-bar). As a result, it was possible to secure the safety of wooden frame while the impact resistance and the Stiffness of double saw-toothed bracket and cross M-bar were not secured.

  • PDF

Influence of interfacial adhesive on the failure mechanisms of truss core sandwich panels under in-plane compression

  • Zarei, Mohammad J.;Hatami, Shahabeddin;Gholami, Mohammad
    • Steel and Composite Structures
    • /
    • v.44 no.4
    • /
    • pp.519-529
    • /
    • 2022
  • Sandwich structures with the superior mechanical properties such as high stiffness and strength-to-weight ratio, good thermal insulation, and high energy absorption capacity are used today in aerospace, automotive, marine, and civil engineering industries. These structures are composed of moderately stiff, thin face sheets that withstand the majority of transverse and in-plane loads, separated by a thick, lightweight core that resists shear forces. In this research, the finite element technique is used to simulate a sandwich panel with a truss core under axial compressive stress using ABAQUS software. A review of past experimental studies shows that the bondline between the core and face sheets plays a vital role in the critical failure load. Therefore, this modeling analyzes the damage initiation modes and debonding between face sheet and core by cohesive surface contact with traction-separation model. According to the results obtained from the modeling, it can be observed that the adhesive stiffness has a significant influence on the critical failure load of the specimens. To achieve the full strength of the structure as a continuum, a lower limit is obtained for the adhesive stiffness. By providing this limit stiffness between the core and the panel face sheets, sudden failure of the structure can be prevented.

Estimation of Young's and Shear Moduli of a Core in ISB Panel with Woven Metal as Inner Structures (망형 직조 금속을 내부구조체로 가진 ISB 판재의 심재 종탄성 및 전단 계수 예측)

  • Ahn, Dong-Gyu;Nam, Gyung-Heum;Jung, Chang-Gyun;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.116-123
    • /
    • 2009
  • The elastic properties of core affect mechanical properties and deformation behaviours of the lightweight sandwich panel. The objective of the present paper is to estimate experimentally Young's and shear moduli of a core in internally structured boned (ISB) panel with woven metal as inner structures using the deflection theory of sandwich beam considered core stiffness. Three points bending experiments were performed to obtain force-deflection curves of the designed ISB panel in each material direction. The elastic and shear moduli of the core in each material direction were estimated from slopes and intercepts of relationships between compliance per the span length and square of the span length, respectively. The results of the estimation showed that the fabric technology of the woven metal affects the variation of the elastic properties in the core. Through the comparison of shear moduli and force-deflection curves of the proposed method and those without considering the core stiffness, it was shown that the core stiffness should be considered to estimate properly the Young's and shear moduli of ISB panels. Finally, the contribution ratio of bending and shear deflections of ISB panels to the total deflection was quantitatively examined.

A Basic Study of Production System Development of Free-form Concrete Panels (비정형 콘크리트 패널 생산 시스템 구축 기초연구)

  • Son, Seung-Hyun;Kim, Ki-Ho;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.70-71
    • /
    • 2019
  • Glass fiber reinforced concrete (GFRC) is very suitable as a material for free-form concrete panels (FCPs) because of its lightweight, strong, moldable, durable and sustainable properties. GFRC is superior in construction and maintenance compared with materials such as steel, aluminium, titanium, glass and plastic, and is advantageous in cost. However, GFRC is being produced by skilled craftsmen, and still lacks the technology to economically produce high quality FCPs. Currently, there is a technology to automatically and accurately produce FCPs. However, the developed technology can not be applied to the field with simple production technology without production line for mass production. To solve this problem, the purpose of this study is a basic study of production system development of free-form concrete panels. This study introduces the developed FCPs production technology and builds FCP production system for mass production. The results of this study will be used as basic data for the commercial production of FCPs in the future.

  • PDF

Study on the Design Process to minimize the Weight of the Damping Material (제진재 경량화를 위한 설계 프로세스 연구)

  • Kim, Ki-Chang;Kwon, Jo-Seph;Kim, Chan-Mook;Kim, Jin-Taek
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.2
    • /
    • pp.115-122
    • /
    • 2012
  • Sound packages and damping materials have been widely applied on the floor to decrease the interior noise of a vehicle. Based on the previous researches on the low-noise vehicles, weight optimization through minimization of damping material usage is required while decreasing mid and high frequency range noise by application of sound packages. This paper describes the analysis process of robust design of vehicle body structure before applying damping materials and focuses on the analysis and test process of the location optimization at the stage of damping material application. A vibration experiment for the analysis of floor panel velocity with respect to the excitation of suspension attachment parts at the underfloor of a vehicle is performed. And through the improvement correlation between FEA and TEST, a design guide to optimize damping materials application in the early design stage is proposed. A research on vibration damping steel sheets and liquid acoustic spray on deadener(LASD) is performed to minimize manufacturing time and to minimize the space for pre-existing asphalt damping materials. As results of this study, panel stiffness is achieved through curved surface panel and bead optimization. And test baseline of optimum design is suggested through damping material optimization. And finally, through re-establishing the analysis process for vibration reduction of vehicle floors and lightweight design of damping materials, it is possible to design damping materials efficiently in the preceding stage of design.

A Study for Stamping of Patchwork with Resistance Spot Weld (저항 점용접에 의한 실러 패치워크 적용 판재 프레스 성형 연구)

  • Lee, Gyeong-Min;Jung, Chan-Yeong;Song, Il-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.25-31
    • /
    • 2018
  • Recently, research on the development of lightweight vehicle bodies is increasing continuously as a response to fuel economy regulations. To reduce the weight of a vehicle body, a conventional steel plate has been substituted by light weight material with high specific strength and the jointing of multi-materials is generally applied. On the other hand, the customer's demand for safety and emotional quality in NVH (Noise, Vibration and Harshness) is becoming increasingly important. Therefore, a light weight with proper strength and NVH quality is needed. In the view of light weighting and NVH quality, the application of a vibration proof steel plate can be an effective solution but the formability of a sandwich panel is different with a conventional steel sheet. Therefore, careful analysis of formability is required. This study aims to characterize the formability of a sandwich high-strength steel plate. The high-strength steel plates of different thicknesses with resistance spot welding and sealer bonding were analyzed using forming limits diagram through a cup drawing test.