• Title/Summary/Keyword: Lightweight concrete block

Search Result 16, Processing Time 0.024 seconds

Strength Variations of Light Weight Foamed Concrete According to the Autoclaving Time (오토클레이브 양생시간에 따른 경량기포콘크리트의 강도 변화에 관한 실험적 연구)

  • Kang Cheol;Kang Gi Woong;Kang Eun Gu;Noh Jea Myoung;Kwon Gi Ju;Kim Jin Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.57-60
    • /
    • 2005
  • This is the experimental study on the strength development of the light weight concrete block according to the autoclaving time. The calcareous source used the cement, siliceous material used the bottom ash ground to fine particle, and the PP fiber used to increase toughness. The results of this experiment are as follows. According to the increase of autoclaving time and the fiber content, compressive and flexural strengths are increased. Despite of the changes of the autoclaving time, tobermorite was produced on each of the specimens. However, the phase of tobermorite was changed in accordance with the changes of autoclaving time.

  • PDF

Development of a Lightweight Rail Fastener Clip Shoulder (레일체결장치용 경량화숄더(코일스프링클립걸이)개발)

  • 양재성;백광일;남보현
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.487-494
    • /
    • 2000
  • For the rail fastener clip shoulder being used in Pandrol e-cilp type fastening system, there has been a need to make a structural and electrical improvement due to the fact that PC concrete sleeper showed material loss in the vicinity of exposed portion of the clip shoulder and the fact that track signal was lost when a track insulation block is missing on the track. In the present study, a new lightweight rail fastener clip shoulder with enhanced electrical insulation capability is developed

  • PDF

Development of Automatic Measurement and Inspection System for ALC Block Using Camera (카메라를 이용한 ALC 블록의 치수계측 및 불량검사 자동화 시스템 개발)

  • 허경무;김성훈
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.6
    • /
    • pp.448-455
    • /
    • 2003
  • A system design technique of automatic thickness measurement and defect inspection system, which measures the thickness of the ALC(Autoclaved Lightweight Concrete) block and inspects the defect on a realtime basis is proposed. The image processing system was established with a CCD camera, an image grabber, and a personal computer without using assembled measurement equipment. The image obtained by this system was analyzed by a devised algorithm, specially designed for the enhanced measurement accuracy. For the realization of the proposed algorithm, the preprocessing method that can be applied to overcome uneven lighting environment, an enhanced edge decision method using 8 edge-pairs with irregular and rough surface, the unit length decision method in uneven condition with rocking objects, and the curvature calibration method of camera using a constructed grid are developed. The experimental results, show that the required measurement accuracy specification is sufficiently satisfied using our proposed method.

Research on the Load Reduction Effect Using EPS (EPS의 압축성을 이용한 토압저감효과에 관한 연구)

  • 김진만;조삼덕;최봉혁;오세용
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.101-108
    • /
    • 2004
  • For the last 30 years, the use of EPS as a lightweight filling material has grown significantly throughout the world. The fields of applying EPS block have also increased. The most representative example in geotechnical applications is using EPS block as a compressible inclusion that causes the reduction of static earth pressure on earth-retaining wall, bridge abutment and pipes. EPS blocks have a good workability by its lightweight characteristic and a uniform engineering property with the change of its density. Also EPS blocks have best material property as a compressible inclusion. This paper analyzes that the compressible inclusion function of EPS causes the reduction of static earth pressure on retaining wall and concrete box culvert. A series of in-situ tests were conducted to evaluate the reduction of static earth pressure using EPS inclusion. Based on in-situ test, it is found that the magnitude of static earth pressure was reduced to about 20% for the retaining wall and about 45∼53% for the box culvert compared with theoretical active earth pressure.

Evaluation of Temperature and Humidity Maintenance Performance with Vegetation Blocks Incorporating Waste Glass Beads Using Arduino Sensor (아두이노 센서를 활용한 폐유리 발포비드 혼입 식생블록의 온습도 유지성능 평가)

  • Gil, Min-Woo;Kim, Gyu-Yong;Pyeon, Su-Jeong;Choi, Byung-Cheol;Kim, Moon-Kyu;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.125-126
    • /
    • 2023
  • Recently, heat island and dry island phenomena occur frequently due to land surface development and excessive energy consumption in urban areas. As a result, the surface temperature of the building and the entire temperature of its surroundings are increased, and as a result, the durability of the building is rapidly deteriorated. In order to suppress these causes, a method of maintaining the temperature of road heating wires was implemented as a temporary measure, but this did not predict climate change. Therefore, this study is a method to measure the compressive strength, density, and thermal conductivity of lightweight concrete using waste glass foam beads. After fabricating a simple chamber, the temperature and humidity of the inside and outside were measured with an Arduino device in consideration of external factors. Therefore, if waste glass foam beads made through proper mixing are constructed in the urban center, the quality of the urban can be improved.

  • PDF

Shear behaviour of thin-walled composite cold-formed steel/PE-ECC beams

  • Ahmed M. Sheta;Xing Ma;Yan Zhuge;Mohamed A. ElGawady;Julie E. Mills;El-Sayed Abd-Elaal
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.75-92
    • /
    • 2023
  • The novel composite cold-formed steel (CFS)/engineered cementitious composites (ECC) beams have been recently presented. The new composite section exhibited superior structural performance as a flexural member, benefiting from the lightweight thin-walled CFS sections with improved buckling and torsional properties due to the restraints provided by thinlayered ECC. This paper investigated the shear performance of the new composite CFS/ECC section. Twenty-eight simply supported beams, with a shear span-to-depth ratio of 1.0, were assembled back-to-back and tested under a 3-point loading scheme. Bare CFS, composite CFS/ECC utilising ECC with Polyethylene fibres (PE-ECC), composite CFS/MOR, and CFS/HSC utilising high-strength mortar (MOR) and high-strength concrete (HSC) as replacements for PE-ECC were compared. Different failure modes were observed in tests: shear buckling modes in bare CFS sections, contact shear buckling modes in composite CFS/MOR and CFS/HSC sections, and shear yielding or block shear rupture in composite CFS/ECC sections. As a result, composite CFS/ECC sections showed up to 96.0% improvement in shear capacities over bare CFS, 28.0% improvement over composite CFS/MOR and 13.0% over composite CFS/HSC sections, although MOR and HSC were with higher compressive strength than PE-ECC. Finally, shear strength prediction formulae are proposed for the new composite sections after considering the contributions from the CFS and ECC components.