• 제목/요약/키워드: Lightweight composite panel

검색결과 29건 처리시간 0.171초

복합재료 Body Panel의 고온열화 특성 (Material Properties Degradation of Composite Body Panel Exposed to High Temperature)

  • 변현중;남현욱;한경섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.219-224
    • /
    • 2000
  • A research for development of composite body panel is in progress for lightening tare. Low specific weight LPMC (Low pressure molding compound) has advantages such as lightweight and resistance to dent and corrosion. In this study, tensile, bending and impact tests for the LPMC and SPRC35 (High tension steel plate) were carried out and compared. Although mechanical properties of SPRC35 are better than the LPMC, the LPMC satisfies basic requirements for car body panel. The high temperature exposed LPMC were degraded due to fiber-matrix debonding and deterioration of resin.

  • PDF

Vibration mitigation of composite laminated satellite solar panels using distributed piezoelectric patches

  • Foda, M.A.;Alsaif, K.A.
    • Smart Structures and Systems
    • /
    • 제10권2호
    • /
    • pp.111-130
    • /
    • 2012
  • Satellites with flexible lightweight solar panels are sensitive to vibration that is caused by internal actuators such as reaction or momentum wheels which are used to control the attitude of the satellite. Any infinitesimal amount of unbalance in the reaction wheels rotors will impose a harmonic excitation which may interact with the solar panels structure. Therefore, quenching the solar panel's vibration is of a practical importance. In the present work, the panels are modeled as laminated composite beam using first-order shear deformation laminated plate theory which accounts for rotational inertia as well as shear deformation effects. The vibration suppression is achieved by bonding patches of piezoelectric material with suitable dimensions at selected locations along the panel. These patches are actuated by driving control voltages. The governing equations for the system are formulated and the dynamic Green's functions are used to present an exact yet simple solution for the problem. A guide lines is proposed for determining the values of the driving voltage in order to suppress the induced vibration.

경량복합패널 심재의 버미큘라이트 첨가율에 따른 밀도 및 열전도율 특성 (Properties of Density and Thermal Conductivity according to Addition ratio of Vermiculite of Lightweight Composite Panel Core)

  • 신진현;김헌태;김태현;이동훈;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 추계 학술논문 발표대회
    • /
    • pp.111-112
    • /
    • 2016
  • Lately, In case of domestic fire situation, Suffocation due to inflammables has shown higher than direct disaster of the fire among the statistics of death caused by disaster. According to study, Lightweight Hybrid Panel as using the inner or outer wall is made with Polysilicon of the inorganic material, PA and vermiculite, so we make progress to performance experiment and review the density, thermal conductivity properties.

  • PDF

하니컴 샌드위치 Panel을 이용한 LCD/PDP 생산 공정용 경량 고기능성 복합 신소재 파렛트 제조 및 그 특성 평가 (Fabrication and Its Evaluation of the Light-weight Composite Pallet Plank for an Assembly Line of LCD/PDP by using Honeycomb Sandwich Panel)

  • 김윤해;최병근;손진호;조영대;엄수현;우병훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권2호
    • /
    • pp.304-310
    • /
    • 2006
  • A typical honeycomb sandwich panel consists of two thin, high-strength facings bonded to a thick, light-weight core. Each component by itself is relatively weak and flexible, but when it combined in a sandwich panel they produce a structure that is stiff, strong, and lightweight. To prove the suitability the honeycomb sandwich structure with prepreg, the mechanical properties of the skin materials and honeycomb sandwich structure were evaluated with the static strength tests. Accordingly, the honeycomb sandwich structure made by autoclave process is available for a panel on LCD/PDP assembly line.

천장 인필시스템에 따른 장수명주택 경량벽체의 성능실험에 관한 연구 (A Study on the Performance Experiments of Lightweight Wall of Long-life Housing by Ceiling Infill System)

  • 서동구;이종호;김은영;황은경
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.247-248
    • /
    • 2018
  • In order to secure the variability of long-life housing, dry walls are used. The composite gypsum board panel is the most frequently used infill system for the wall, and it is an excellent construction method in terms of constructability and economic feasibility. However, there are also problems such as the destruction of Ondol pipes at the bottom floor and being unable to fix the light weight steel frame (M-bar) when a variable composite gypsum board panel is used. To solve such problems, a wall with a method of fixing only the top part without fixing the bottom floor is developed, but it is difficult to identify the durability of ceiling frame according to the tensile force of stud and the safety according to the Stiffness and impact resistance (soft body) of ceiling frame. Therefore, this study verified the effectiveness of infill system for the wall by conducting experiment on the stiffness and impact resistance of composite gypsum board panel according to the reinforcement of ceiling frame (wooden frame, double saw-toothed bracket, Cross M-bar). As a result, it was possible to secure the safety of wooden frame while the impact resistance and the Stiffness of double saw-toothed bracket and cross M-bar were not secured.

  • PDF

하니컴 샌드위치 Panel을 이용한 LCD/PDP생산공정용 고기능성 복합 신소재 파렛트의 최적설계 (The Optimum Design of the Light-weight Composite Pallet Plank for Assembly Line of LCD/PDP by using Honeycomb Sandwich Panel)

  • 김윤해;최병근;손진호;조영대;엄수현;우병훈
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.388-394
    • /
    • 2005
  • A typical honeycomb sandwich panel consists of two thin, high-strength facings bonded to a thick, light-weight core. Each component by itself is relatively weak and flexible, but when it combind in a sandwich panel they produce a structure that is stiff, strong, and lightweight. In addition to use in honeycomb sandwich panels, honeycomb is used for energy absorption, radio frequency shielding, light diffusion, and to direct air flow.Accordingly, the usage of honeycomb sandwich structure is very widely applied to the aircraft, the automobile, and marine industry, etc., because of these advantages. Generally, this honeycomb sandwich structure is manufactured by autoclave process.In this study, the honeycomb sandwich structure was produced by prepreg. To prove the suitability the honeycomb sandwich structure with prepreg, The optimum design of the skin materials and honeycomb sandwich structure were evaluated with the theory of stress analysis.

  • PDF

복합소재를 활용한 곡면 패널의 부재단위 성능 평가 (An Experimental Study on the Behavior of Curved Panel Parts Using Composite Materials)

  • 박희범;박종섭;강재윤;정우태
    • 한국산학기술학회논문지
    • /
    • 제19권7호
    • /
    • pp.474-480
    • /
    • 2018
  • 최근 구조물의 장수명화에 대한 관심이 증가하면서 내부식, 고내구성이 뛰어난 재료적 특성으로 인해 유지관리비용이 현저히 절감되는 FRP를 건설 구조물에 활용하기 위한 연구가 다방면에서 시도 되고 있다. 본 연구에서 대상으로 하는 복합소재 패널은 곡선을 가지는 부재로서 터널 등의 구조물에 가장 많이 사용되는 아치형 부재이다. 최근 복합소재 곡면패널은 자동화 제작장치에 의해 고품질, 대량생산이 가능하게 되었으며 성형공정을 토대로 강화섬유의 공급 및 배열에서 최종 제품의 절단까지 일괄공정으로 이루어진다. 하지만 아직까지는 구조부재로서의 적용 빈도가 낮아 관련 설계기준 및 실험데이터가 부족한 실정이다. 따라서 본 연구의 목적은 FRP 곡면패널의 구조부재로서 성능을 검증하기 위하여 우선적으로 부재 단위의 역학적 성능을 검토하는 것이다. 이를 위해 섬유방향 복합소재 패널로부터 시편을 제작하여 부재단위의 인장실험, 압축실험, 연결부 성능실험을 수행하여 FRP 패널에 적용된 부재의 역학적 특성을 파악하고자 한다. 인장 실험결과 곡률이 큰 시험체의 인장강도가 더 크게 나타났으며, 압축 시험결과 복합소재 단면이 콘크리트 단면보다 압축강도가 더 크게 나타났다. 마지막으로 연결부 성능 시험결과 연결부의 부착성능은 FRP 복합소재 패널의 강도보다 동등 이상의 강도를 가지고 있는 것으로 나타났다.

Finite Element Analysis of Carbon Fiber Composite Sandwich Panels Subjected to Wind Debris Impacts

  • Zhang, Bi;Shanker, Ajay
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.436-442
    • /
    • 2022
  • Hurricanes and tornadoes are the most destructive natural disasters in some central and southern states. Thus, storm shelters, which can provide emergency protections for low-rise building residents, are becoming popular nowadays. Both FEMA and ICC have published a series of manuals on storm shelter design. However, the authors found that the materials for related products in the market are heavyweight and hard to deliver and install; renovations are necessary. The authors' previous studies found that lightweight and high-performance composite materials can withstand extreme wind pressure, but some building codes are designated in wind-borne debris areas. In these areas, wind debris can reach greater than 100 mph speed. In addition, the impact damage on the composite materials is an increasing safety issue in many engineering fields; some can cause catastrophic results. Therefore, studying composite structures subjected to wind debris impact is essential. The finite element models are set up using the software Abaqus 2.0 to conduct the simulations to observe the impact resistance behavior of the carbon fiber composite sandwich panels. The selected wood debris models meet the FEMA requirements. The outcome of this study is then employed in future lab tests and compared with other material models.

  • PDF

Free vibration of actual aircraft and spacecraft hexagonal honeycomb sandwich panels: A practical detailed FE approach

  • Benjeddou, Ayech;Guerich, Mohamed
    • Advances in aircraft and spacecraft science
    • /
    • 제6권2호
    • /
    • pp.169-187
    • /
    • 2019
  • This work presents a practical detailed finite element (FE) approach for the three-dimensional (3D) free-vibration analysis of actual aircraft and spacecraft-type lightweight and thin honeycomb sandwich panels. It consists of calling successively in $MATLAB^{(R)}$, via a developed user-friendly GUI, a detailed 3D meshing tool, a macrocommands language translator and a commercial FE solver($ABAQUS^{(R)}$ or $ANSYS^{(R)}$). In contrary to the common practice of meshing finely the faces and core cells, the proposed meshing tool represents each wall of the actual hexagonal core cells as a single two-dimensional (2D) 4 nodes quadrangularshell element or two 3 nodes triangular ones, while the faces meshes are obtained simply using the nodes at the core-faces interfaces. Moreover, as the same 2D FE interpolation type is used for meshing the core and faces, this leads to an automatic handling of their required FE compatibility relations. This proposed approach is applied to a sample made of very thin glass fiber reinforced polymer woven composite faces and a thin aluminum alloy hexagonal honeycomb core. The unknown or incomplete geometric and materials properties are first collected through direct measurements, reverse engineering techniques and experimental-FE modal analysis-based inverse identification. Then, the free-vibrations of the actual honeycomb sandwich panel are analyzed experimentally under different boundary conditions and numerically using different mesh basic cell shapes. It is found that this approach is accurate for the first few modes used for pre-design purpose.

유리섬유-폴리프로필렌 복합재료의 압축 공정 중 뒤틀림 예측에 관한 연구 (A Study on the Prediction of Warpage During the Compression Molding of Glass Fiber-polypropylene Composites)

  • 김규형;조동혁;이주원;김상덕;신철민;윤정환
    • 소성∙가공
    • /
    • 제32권6호
    • /
    • pp.367-375
    • /
    • 2023
  • Composite materials, known for their excellent mechanical properties and lightweight characteristics, are applied in various engineering fields. Recently, efforts have been made to develop an automotive battery protection panel using a plain-woven composite composed of glass fiber and polypropylene to reduce the weight of automobiles. However, excessive warpage occurs during the GF/PP compression molding process, which makes car assembly challenging. This study aims to develop a model that predicts the warpage during the compression molding process. Obtaining out-of-plane properties such as elastic or shear modulus, essential for predicting warpages, is tricky. Existing mechanical methods also have limitations in calculating these properties for woven composite materials. To address this issue, finite element analysis is conducted using representative volume elements (RVE) for woven composite materials. A warpage prediction model is developed based on the estimated physical properties of GF/PP composite materials obtained through representative volume elements. This model is expected to be used for reducing warpages in the compression molding process.