• Title/Summary/Keyword: Lightweight aggregate

Search Result 364, Processing Time 0.026 seconds

Estimation of the mechanical properties of oil palm shell aggregate concrete by novel AO-XGB model

  • Yipeng Feng;Jiang Jie;Amir Toulabi
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.645-666
    • /
    • 2023
  • Due to the steadily declining supply of natural coarse aggregates, the concrete industry has shifted to substituting coarse aggregates generated from byproducts and industrial waste. Oil palm shell is a substantial waste product created during the production of palm oil (OPS). When considering the usage of OPSC, building engineers must consider its uniaxial compressive strength (UCS). Obtaining UCS is expensive and time-consuming, machine learning may help. This research established five innovative hybrid AI algorithms to predict UCS. Aquila optimizer (AO) is used with methods to discover optimum model parameters. Considered models are artificial neural network (AO - ANN), adaptive neuro-fuzzy inference system (AO - ANFIS), support vector regression (AO - SVR), random forest (AO - RF), and extreme gradient boosting (AO - XGB). To achieve this goal, a dataset of OPS-produced concrete specimens was compiled. The outputs depict that all five developed models have justifiable accuracy in UCS estimation process, showing the remarkable correlation between measured and estimated UCS and models' usefulness. All in all, findings depict that the proposed AO - XGB model performed more suitable than others in predicting UCS of OPSC (with R2, RMSE, MAE, VAF and A15-index at 0.9678, 1.4595, 1.1527, 97.6469, and 0.9077). The proposed model could be utilized in construction engineering to ensure enough mechanical workability of lightweight concrete and permit its safe usage for construction aims.

The Thermal Conduction Property of Structural Concrete using Insulation Performance Improvement Materials (단열성능향상 재료를 사용한 구조용 콘크리트의 열전도 특성)

  • Park, Young-Shin;Kang, Min-Gi;Kim, Jung-Ho;Ji, Suk-Won;Jeon, Hyun-Kyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.9-15
    • /
    • 2016
  • The part of a building with the biggest energy loss is the exterior and many studies are actively conducted to reduce the energy loss on that part. However, most studies consider the window frames and insulation materials, but many studies do not discuss the concrete that takes more than 70% of the exterior. In order to minimize the energy loss of buildings, it is necessary to enhance the concrete's insulation performance and studies need to be conducted on this. Therefore, this study used a micro foam cell admixture, calcined diatomite powder, and lightweight aggregates as a part of a study to develop a type of concrete with improved insulation performance that has twice higher thermal conductivity compared to concrete. It particularly secured the porosity inside concrete to lower thermal conductivity. As a result of the experiment, the slump and air capacity showed fair results, but all mixtures containing micro foaming agent showed 14.3~35.1% lower mass per unit of volume compared to regular concrete. Compressive strength decreased slightly due to the materials used to improve the insulating performance, but it all satisfied this study's target strength(24MPa). Thermal conductivity was up to twice higher than that of regular concrete.

Influence of red mud additive on lightening of artificial aggregates containing coal bottom ash (석탄바닥재가 포함된 인공골재의 경량화에 미치는 적니 영향)

  • Kang, Min-A;Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.1
    • /
    • pp.41-46
    • /
    • 2011
  • The artificial aggregates (AAs) composing of 2 wastes, coal bottom ash and dredged soil (7 : 3, weight ratio) were fabricated as a function of red mud contents,0~30 wt% using direct sintering method at $1050{\sim}1250^{\circ}C$ for 10 min, and those physical properties were evaluated. Especially, in order to analyze the red mud addition effect on the bloating phenomenon of AAs manufactured, the specific gravity and water absorption were measured and studied linked with the microstructural observation results. The lightening of AAs was enhanced due to increased bloating with increasing temperature and red mud contents. The AAS sintered at $1050{\sim}1150^{\circ}C$ showed well-developed black-coring structure, but for the specimens containing red mud sintered over $1200^{\circ}C$ generated excessive liquid and gas caused by reduction of $Fe_2O_3$, thus the black-coring part was gradually burst open out of shell of AAs. Particularly, all specimens containing 30 wt% red mud was burst up when sintered over $1100^{\circ}C$. The AAs containing no red mud sintered at $1200^{\circ}C$ had a specific gravity of about 1.2 and those containing 20 wt% had below 1.0 which are characters of lightweight aggregate.

Stress-Strain Properties of Surlightweight Polymer Concrete (초경량(超輕量) 폴리머 콘크리트의 응력(應力)-변형특성(變形特性))

  • Sung, Chan Yong;Kim, Kyung Tae;Min, Jeong Ki;Kim, Young Ik;Youn, Joon No;Jung, Hyun Jung
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.2
    • /
    • pp.271-277
    • /
    • 1998
  • This study was performed to evaluate the stress-strain properties of surlightweight polymer concrete using synthetic lightweight aggregates. The following conclusions were drawn; 1. The dynamic modulus of elasticity was in the range of $1.514{\times}10^5{\sim}1.916{\times}10^5kgf/cm^2$, which was approximately 48~96% of that of the normal cement concrete. It was showed larger with the decrease of synthetic lightweight fine aggregate. 2. The static modulus of elasticity was in the range of $2.552{\times}10^4{\sim}4.386{\times}10^4kgf/cm^2$, which was showed lower compared to that of the normal cement concrete. The poisson's number of surlightweight polymer concrete was less than that of the normal cement concrete. 3. The stress-strain curves of surlightweight polymer concrete were showed smaller with the increase of expanded clay.

  • PDF

A study on the properties of artificial aggregates containing bottom ash from the power plant and waste catalyst slag (화력발전소 바닥재와 폐촉매 슬래그로 제조된 인공골재의 특성 연구)

  • Jo, Si-Nae;Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.4
    • /
    • pp.200-206
    • /
    • 2012
  • The artificial aggregate composing of coal bottom ash and waste catalyst slag (7 : 3, wt%) were fabricated using direct sintering method and, the bloating properties of aggregates were investigated as a function of raw material particle size and sintering temperature. Most of the artificial aggregates sintered at over $1150^{\circ}C$ showed the bloating phenomenon regardless of particle size of the raw materials. Consequently, the specific gravity of the aggregates was drastically decreased to below 1.4. The aggregates containing waste catalyst slag of $90{\mu}m$ under among the W-series specimens, however, did not show the noticeable bloating phenomenon. For the aggregates sintered at lower temperature as $1050{\sim}1150^{\circ}C$, the specific gravity increased with particle size of raw materials. Also, the water absorption of all aggregates decreased with the sintering temperature. The aggregates fabricated in this study met the lightweight aggregate standard showing the specific gravity 1.7~1.4 and water absorption 8~19 % and, therefore, can be applicable for the various fields.

Assessment of Dredged Soils and Sediments Properties in the Lower Reach of Nakdong River and Coastal Areas of Busan for Beneficial Uses (낙동강 하류 및 부산연안지역의 준설토와 퇴적토 활용을 위한 특성 평가)

  • Yi, Yongmin;Kim, Gukjin;Sung, Kijune
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.57-66
    • /
    • 2013
  • Although the quantity of dredged soils has increased owing to recent new harbor construction, sea course management, polluted sediment dredging, and four-river project, the reuse or recycling of those dredged soils has not done properly in Korea. To develop measures to utilize them in various ways for reuse or recycling, the biophysicochemical properties of dredged soils and sediment were assessed in this study. Samples were classified according to their sources-river and sea-by location, and as dredged soil and sediment depending on storage time. The results showed that dredged materials from the sea have high clay content and can be used for making bricks, tiles, and lightweight backfill materials, while dredged materials from the river have high sand content and can be used in sand aggregates. Separation procedures, depending on the intended application, should be carried out because all dredged materials are poorly sorted. All dredged soils and sediments have high salinity, and hence, salts should be removed before use for cultivation. Since dredged materials from the sea have adequate concentrations of nutrients, except phosphate, they can be used for creating and restoring coastal habitats without carrying out any additional removal processes. The high overall microbial activities in dredged materials from the river suggested that active degradation of organic matter, circulation of nutrients, and provision of nutrients may occur if these dredged materials are used for cultivation purpose.

Research on improvement of water purification efficiency by porous concrete using bio-film (생물막을 이용한 다공성 콘크리트의 수질정화 효율 개선에 대한 연구)

  • Kim, Tae-Hoon;Li, Feng-Qi;Ahn, Tae-Woong;Choi, I-Song;Oh, Jong-Min
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.6
    • /
    • pp.815-821
    • /
    • 2011
  • This study aims to estimate the biological decomposition capacity of MPC(Microorganism Porous-Concrete). MPC has specific surface area formed by inside pores, and bio compound was added to those pores to reduce pollutants loading. To evaluate the water purification capacity of MPC, we carried out the comparative studies using different media types [GPC(General Porous-concrete), CPC(Compound porous-concrete), LPC(Lightweight aggregate porous-concrete)] under the condition of CFSTR, and different retention times (30, 60 and 120 min). We also estimated the purification capacity of MPC under different concentrations of pollutant loadings. The MPC showed higher efficiency in water purification function than other conventional porous concretes with efficient decrease rates of SS, BOD, COD, and nutrient concentrations. In the comparison experiment for different retention times, MPC showed the highest removal efficiency for all tested pollutants in the longest retention time(120 min). In the long period test, the removal efficiencies of MPC concrete were high until 100 days after the set up of the operation, but began to decrease. Outflow flux was invariable compared with inflow flux so that extra detention time for media fouling such as back washing is not needed. But the results suggested that appropriate management is necessary for long-term operation of MPC. As the final outcome, MPC using bio organisms is considered to be efficient for stream water purification when they used as substrates for artificial river structure.

Development of lightweight concrete using the PCM II : Investigation on Foam Volume/Fly Ash Relationship of Foam Concrete, and Effect of High Content Micro Polypropylene Fiber and Microstructure

  • Lim, Myung-Kwan;Enkhbold, odontuya;Choi, Dong-Uk
    • KIEAE Journal
    • /
    • v.15 no.4
    • /
    • pp.45-52
    • /
    • 2015
  • Purpose: Foam concrete is the concrete that contains large amount of air voids inside. In general, the density of foam concrete depends on parameters like water/binder ratio, foam volume, aggregate and pozzolan content, etc. Method: In this study, the effect of foam volume and fly ash content on dry density is investigated intensively in order to find the relationship between each parameter and their abilities to counteract with each other. According to the above information, though there are quite a number of studies on the effect micro fiber on foam concrete at low volume fractions, there is still lack of information especially on the high fiber content side. The objective of the second study is to investigate further on the use of micro fiber at higher volume fraction and fill in the lacking information. Beside from this study, the investigation of the effect of micro-fiber (polypropylene) to enhance the properties of foam concrete is also carried out. Result: Of the two variables that are investigated in this study, the foam volume and the fly ash content, show significant effect on the properties of foam concrete. The foam volume tends to decrease the density and strength of foam concrete. In the second part of our study, a large fibre volume fraction is proved to be able to evidently increase the flexural strength of foam concrete up to about 40% due to the effect of fibre bridging over the crack and a significant number of fibres that intercepts the crack surfaces. However, the compressive strength is found to decrease severely due to the occurrence of large pores as the result of fibre being added into concrete mixture.

Durability of Concrete Using Insulation Performance Improvement Materials (단열성능 향상 재료를 사용한 콘크리트의 내구성에 관한 연구)

  • Park, Young-Shin;Kim, Jung-Ho;Kim, Se-Hwan;Kim, Sang-Heon;Jeon, Hyun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.22-29
    • /
    • 2015
  • In this study, we tested to develop and apply structural insulation performance improvement concrete to field, which had compressive strength in 24 MPa and thermal conductivity twice as much as normal concrete. After experiment about slump and air contents, combination product of Plain and calcined diatomite powder showed reduction of slump and air contents and combination product with micro foam cell admixture, we cannot find result of slump and air contents reduction. Unit weight of combination product with insulation performance improvement materials decreased more than that of Plain. In the test of compressive strength, compressive strength of insulation performance improvement concrete decreased more than that of Plain but was content with 24 MPa. thermal conductivity of insulation performance improvement concrete tended to decrease. Freezing and thawing resistance of insulation performance improvement concrete was similar to that of Plain. In carbonation resistance test, combination product with calcined diatomite powder showed the result which was similar to that of Plain. In carbonation resistance test, combination product with micro foam cell admixture showed a increase compared to that of Plain and length variation of combination product generally increased.

Physical and Mechanical Properties of Surlightweight Polymer Concrete (초경량(超輕量) 폴리머 콘크리트의 물리(物理)·역학적(力學的) 특성(特性))

  • Kim, Kyung Tae;Kim, Seong Wan;Sung, Chan Yong;Youn, Joon Ro;Han, Young Kou
    • Korean Journal of Agricultural Science
    • /
    • v.24 no.2
    • /
    • pp.218-225
    • /
    • 1997
  • This study was performed to evaluate the physical and mechanical properties of surlightweight polymer concrete using synthetic lightweight aggregate. The following conclusions were drawn; 1. Unit weight was in the range of $810~970kgf/m^3$, the unit weights of those concrete were decreased 58~65% than that of the normal cement concrete. 2. The highest strength was achieved by $P_1$, it was increased 112% by compressive strength, 378% by bending strength and 290% by tensile strength than that of the normal cement concrete, respectively. 3. Ultrasonic pulse velocity was in the range of 2,206~2,595m/s, which was low showed compared to that of the normal cement concrete. 4. Durability of surlightweight polymer concrete was superior to that of the normal cement concrete. 5. Compressive, tensile and bending strength were largely showed with the increase of unit weight. But, ultrasonic pulse velocity was low showed with the increase of unit weight.

  • PDF