• Title/Summary/Keyword: Lightweight Composite Panel

Search Result 29, Processing Time 0.025 seconds

Density and Thermal Conductivity Property of the Lightweight Composite Panel Core According to Pearlite Replacement ratio (펄라이트 치환율에 따른 경량복합패널 심재의 밀도 및 열전도율 특성)

  • Kim, Heon-Tae;Jung, Byeong-Yeol;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.175-176
    • /
    • 2014
  • Recently, in the apartment house of our country, office building, apartment, and etc, the lightweight composite panel is much used as the partition wall body. This is due to be very convenient when the execution and dismantling is convenient and it forms the space which the consumer in the space desires. Therefore, in this research, the thermal conductivity property of the lightweight composite panel core according to the replacement ratio variation of the pearlite tries to be analyze. As the density test result and replacement ratio of the pearlite increased, the density showed the tendency to rise. the replacement ratio of the pearlite increased, the absorption rate showed the tendency to fall. And this is determined that absorption rate is degraded due to the increase in the density. the thermal conductivity test result and pearlite replacement ratio increased, the tendency that the thermal conductivity increases was represented.

  • PDF

Density and Strength Properties according to the Paper Ash addition ratio of the Lightweight Composite Panel Core Using the Blast Furnace Slag and Polysilicon Sludge (고로슬래그와 폴리실리콘 슬러지를 활용한 경량복합패널 심재의 제지애시 첨가율에 따른 밀도 및 강도특성)

  • Lim, Jeong-Geun;Lee, Ji-Hwan;Park, Hee-Gon;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.152-153
    • /
    • 2015
  • Recently, solar energy generation is one of the fastest growing industries for eco-friendly energy. Every year, solar energy generation industry grows to 42% on average. However, polysilicon sludge is generated from processing of polysilicon but, there is nothing to handle that. Therefore, we need research to recycle polysilicon sludge. Also, improved fire resistance efficiency of wall is required according to reinforced fire safety standards due to many cases of big fires in our country. This study focuses on density and strength properties according to the addition ratio of paper Ash for the lightweight composite panel core with polysilicon sludge. As a result of the test, adding paper ash 9% has the best density and strength properties.

  • PDF

Experimental and numerical investigation of RC sandwich panels with helical springs under free air blast loads

  • Rashad, Mohamed;Wahab, Mostafa M.A.;Yang, T.Y.
    • Steel and Composite Structures
    • /
    • v.30 no.3
    • /
    • pp.217-230
    • /
    • 2019
  • One of the most important design criteria in underground structure is to design lightweight protective layers to resist significant blast loads. Sandwich blast resistant panels are commonly used to protect underground structures. The front face of the sandwich panel is designed to resist the blast load and the core is designed to mitigate the blast energy from reaching the back panel. The design is to allow the sandwich panel to be repaired efficiently. Hence, the underground structure can be used under repeated blast loads. In this study, a novel sandwich panel, named RC panel - Helical springs- RC panel (RHR) sandwich panel, which consists of normal strength reinforced concrete (RC) panels at the front and the back and steel compression helical springs in the middle, is proposed. In this study, a detailed 3D nonlinear numerical analysis is proposed using the nonlinear finite element software, AUTODYN. The accuracy of the blast load and RHR Sandwich panel modelling are validated using available experimental results. The results show that the proposed finite element model can be used efficiently and effectively to simulate the nonlinear dynamic behaviour of the newly proposed RHR sandwich panels under different ranges of free air blast loads. Detailed parameter study is then conducted using the validated finite element model. The results show that the newly proposed RHR sandwich panel can be used as a reliable and effective lightweight protective layer for underground structures.

Evaluation on In-plane Shear Strength of Lightweight Composite Panels (경량 복합패널의 면내 전단 성능 평가)

  • Hwang, Moon-Young;Kang, Su-Min;Lee, Byung-yun;Kim, Sung-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.9-20
    • /
    • 2019
  • The number of natural disasters in Korea, such as earthquakes, is increasing. As a result, there is growing need for temporary residences or shelters for disaster conditions. The aim of this study was to produce post-disaster refugees housing differentiated from existing shelters using lightweight composite panels. To accomplish this, the structural performance of lightweight composite panels was validated, and an in-plane shear strength test was conducted according to the ASTM E72 criteria among the performance test methods for panels. As a result of the experiment, the maximum load for each specimen under an in-plane shear load was determined. All the experiments ended with the tear of the panel's skin section. The initial stiffness of the specimens was consistent with that predicted by the calculations. On the other hand, local crushing and tearing, as well as the characteristics of the panel, resulted in a decrease in stiffness and final failure. Specimens with an opening showed a difference in stiffness and strength from the basic experiment. The maximum load and the effective area were found to be proportional. Through this process, the allowable shear stress of the specimens was calculated and the average allowable shear stress was determined. The average ultimate shear stress of the lightweight composite panels was found to be $0.047N/mm^2$, which provides a criterion of judgement that could be used to expect the allowable load of lightweight composite panels.

Evaluation on Transverse Load Performance of Lightweight Composite Panels (경량 복합패널의 분포압 강도 성능 평가)

  • Kang, Su-Min;Hwang, Moon-Young;Kim, Sung-Tae;Cho, Young-Jun;Lee, Byung-yun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.146-157
    • /
    • 2018
  • Over the last 10 years, the number of disasters has been increasing in Korea. As a result, the need for temporary residences or shelters for disaster conditions is increasing. In this study, post-disaster refugees housing was developed using lightweight composite panels that are lighter than the materials that make up the existing shelter. To accomplish this, the structural performance of the lightweight composite panel was validated. Among the performance tests on the panels, the transverse load test was conducted according to the ASTM E 72 criteria. As a result of the experiment, when each specimen was subjected to a uniformly distributed load, the allowable load was determined according to the span. All the experiments were ended due to a loss of adhesive at the junction of the skin and core. Further analysis was conducted to calculate the shear stress when the junction was dropped. The mean shear stress at the adhesive surface of a specimen, 150 mm and 200 mm in thickness, was 0.0170MPa and 0.0156MPa, respectively. This suggests that similar values were obtained from panels of equal thickness. In addition, this stress provides a criterion of judgment that could be used to inspect the structural performance of the panels. The performance of the panel was evaluated based on the allowable load, but it may be possible to increase the strength of the lightweight composite panel by improving the joining method to avoid separation from the junction.

A Study on Material Properties of Composite Panel for Impact·Blast Resistance (방호·방폭 보강용 복합패널의 재료특성에 관한 연구)

  • Kim, Woonhak;Kang, Seokwon
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.4
    • /
    • pp.373-380
    • /
    • 2016
  • In order to develop composite fiber panels that can maximize the protection and blast resistance of the existing structures by improving lightweight, high-strength and fireproof performances of the single layer material of precast panels, the basic properties of the inner and outer covers that are mixed with aramid fibers (AF) and polyester fibers (PF) were evaluated in this study. Also, a basic study was performed on the performance of composite fiber panels by testing Nano-sized composite materials that are lightweight and excellent in fire resistance for their compressive strength, bending strength and tensile strength.

Analysis and Experiment on dynamic characteristics of a Carbon Fiber Reinforced Composite Automotive Roof (탄소섬유 복합재로 된 자동차 루프에 대한 동특성 해석 및 실험)

  • 제형호;진용선;김찬묵;강영규;사종성
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.330-335
    • /
    • 2003
  • Analysis and experiment on dynamic characteristics of automotive roof have been carried out experimentally and numerically to design a lightweight roof. Finite element analysis of a conventional steel automotive roof was verified by experiments on vibration characteristics. The dynamic analysis of carbon fiber reinforced composite automotive roof shows that the roof stiffness changes as the fiber orientation of the laminated panel changes. Optimization results yielded a composite roof, which was 52% lighter, than the steel conventional steel automotive roof. This paper addresses a design strategy of composite roof for weight reduction.

  • PDF

Mechanical behavior test and analysis of HEH sandwich external wall panel

  • Wu, Xiangguo;Zhang, Xuesen;Tao, Xiaokun;Yang, Ming;Yu, Qun;Qiu, Faqiang
    • Advances in concrete construction
    • /
    • v.13 no.2
    • /
    • pp.153-162
    • /
    • 2022
  • Prefabricated exterior wall panel is the main non-load-bearing component of assembly building, which affects the comprehensive performance of thermal insulation and durability of the building. It is of great significance to develop new prefabricated exterior wall panel with durable and lightweight characteristics for the development of energy-saving and assembly building. In the prefabricated sandwich insulation hanging wall panel, the selection of material for the outer layer and the arrangement of the connector of the inner and outer wall layers affect the mechanical performance and durability of the wall panels. In this paper, high performance cement-based composites (HPFRC) are used in the outer layer of the new type wall panel. FRP bars are used as the interface connector. Through experiments and analysis, the influence of the arrangement of connectors on the mechanical behaviors of thin-walled composite wall panel and the panel with window openings under two working conditions are investigated. The failure modes and the role of connectors of thin-walled composite wallboard are analyzed. The influence of the thickness of the wall layer and their combination on the strain growth of the control section, the initial crack resistance, the ultimate bearing capacity and the deformation of the wall panels are analyzed. The research work provides a technical reference for the engineering design of the light-weight thin-walled and durable composite sandwich wall panel.

Evaluation of Lateral Load Resistance and Heating/Cooling/Lighting Energy Performance of a Post-disaster Refugees Housing Using Lightweight composite Panels (경량 복합패널을 활용한 구호주거의 횡하중 저항성능 및 냉난방조명 에너지성능 평가)

  • Hwang, Moon-Young;Lee, Byung-Yun;Kang, Su-Min;Kim, Sung-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.252-262
    • /
    • 2019
  • Following the earthquake in Gyeongju (2016) and Pohang (2017), South Korea is no longer a safe place for earthquakes. Accordingly, the need for shelters suitable for disaster environments is increasing. In this study, a lightweight composite panel was used to produce post-disaster housing for refugees to compensate for the disadvantages of existing evacuation facilities. For this purpose, an evaluation of structural performance and thermal environment for post-disaster housing for refugees composed of lightweight composite panels was performed. To assess the structural performance, a lateral loading test was conducted on a system made of lightweight composite panels. The specimens consisted of two types, which differed according to the bonding method, as a variable. In addition, the seismic and wind loads were calculated in accordance with KBC 2016 and compared with the experimental results. Regarding the energy performance, optimization of south-facing window planning and window-wall ratio and solar heat gain coefficient were analyzed to minimize heating, cooling, and lighting energy. As a result, the specimens composed of lightweight composite panels will perform sufficiently safely for lateral loads and the optimized window planning will lead to a low-energy operation.

A Structural Analysis on the Light Rail Vehicle Body with Composite Material (복합재료 경전철의 차체구조 해석)

  • 이영신;김재훈;이호철;길기남;박병준
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.437-446
    • /
    • 1999
  • The structural behavior of the composite material light rail vehicle body are investigated. Composite material is very useful for light rail vehicle structure due to its high specific strength and lightweight characteristics. The main carbody is made of aluminum alloy. The side wall and roof with composite panels can reduce total vehicle weight about 2000kg. In addition, with the lower density of the foam, enhances lightness in the panel and to save the operation expenses. The finite element analysis code, ANSYS is used to evaluate the stability of the body structure under the various load conditions.

  • PDF