• Title/Summary/Keyword: Lightning protection system

Search Result 134, Processing Time 0.021 seconds

The Construction of distribution test facilities of lightning protection equipment (배전급 내뢰설비 시설효과 분석 실증시험설비 구축에 관한 연구)

  • Kang, Moon-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.301-303
    • /
    • 2004
  • In distribution system about 5% of total outage is due to the lightning stroke. In order to reduce the rate of outage occurrence, distribution lightning protection equipments such as a secondary arrester, arching horn and various ground electrodes are developed and installed in the inside and outside of the county. Therefore it is needed to construct the test facilities to analyze the effect of these equipments. In this paper we describe the main content of the test facilities of lightning protection equipments. We have completed the field test of distribution lightning protection equipments for example lightning arrester, secondary arrester and arching horn etc.

  • PDF

Evaluation of the Protection Performance of TT and TN Systems for Low-Voltage Consumers Against Lightning Surges (저압수용가에 공급하는 TT, TN계통의 뇌서지에 대한 보호성능의 평가)

  • Lee, Kyu-Sun;Choi, Jong-Hyuk;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.67-74
    • /
    • 2010
  • Most of domestic low-voltage consumers are supplied from the TN-C system of KEPCO, but their load installations have established according to the national statutory standard for electrical installations based on the TT system. In this work, to propose the proper system earthing arrangements of ensuring the protection of information-technology equipment against lightning surges, the protection performance of TT and TN systems against lightning surges was investigated. As a result, when lightning surge was injected to the neutral line of distribution system, the potential difference between the equipment earth terminal and neutral point of low-voltage mains in a TT system was significantly raised. The TT system is not advised due to the risk of damage to the sensitive computer equipment. Main equipotential bonding is an important requirement for protection of low-voltage installations against lightning surges. The TN system provides the best means to reduce the incoming lightning surges through the neutral line of low-voltage service systems. In addition, It is highly recommended to install the additional earthing at the service position of low-voltage consumers.

The Analysis Results of Lightning Overvoltages by EMTP for Lightning Protection Design of 500kV Substations

  • Ju Hyung-Jun;Lee Heung-Ho
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.366-370
    • /
    • 2005
  • To meet increasing power demand, 500 kV power systems are under consideration in the regions of some Middle Asian countries. As the power system voltage becomes higher, the cost for the power system insulation increases significantly. 500 kV transmission systems will become the basis of a region's power system and they require much higher system reliability. Consequently, by the methods of limiting overvoltages effectively, a reasonable insulation design and coordination must be accomplished. In particular, the Substations must be constructed to be of outdoor type. In order to determine the various factors for the insulation design, the EMTP (Electro-magnetic transient program) is used for the magnification of transient phenomena of the 500 kV systems in the planned network. In this paper, we will explain the calculation results of lightning overvoltages by the EMTP for lightning protection design for the 500 kV substations. To obtain reliable results, the multi-story tower model and EMTP/TACS model are introduced for the simulation of dynamic arc characteristics.

A study on the direct effect of lightning on structures and systems of aircraft (항공기의 구조물과 시스템에 대한 낙뢰직접영향에 관한 연구)

  • Jeong, Duckyoung;Yang, Hyundeok
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.2
    • /
    • pp.41-45
    • /
    • 2016
  • Statistical data show that a large aircraft(transport category) is struck by lightning once a year or once per 1,000 ~ 20,000 flight time. The protection design for lightning must be applied to the aircraft because an aircraft is developed on condition that it is absolutely struck by lightning. For the proper protection design, we need to understand direct effect and indirect effect of lightning. This paper described the direct effect of lightning on aircraft's structures and systems.

Development of Ground Impedance Measuring Instrument for Lightning Protection System (뇌보호 설비를 위한 접지임피던스 측정기 개발)

  • Lee, Tae-Hyung;Cha, Sung-Chul;Earn, Ju-Hang
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.194-195
    • /
    • 2006
  • This study evaluated the impedance characteristics of earth termination system and developed a variable frequency-typed inverter (measuring tool) for the utilization in ground design for lightning protection. The variable-frequency-typed inverter were composed of rectification part, voltage adjuster, IGBT controller and measuring part. Meanwhile, the square wave signal of variable frequency converted its frequency up to lightning surge band by using an IGBT after rectifying an alternating current (AC). It conducted performance evaluation of ground impedance of actual earth termination system by using the developed measuring tool for ground impedance and confirmed that such impedance-oriented performance evaluation was effective in the design of lightning protection.

  • PDF

An Analysis of Performance Testing for Metallic Connection Components of Lightning Protection System (피뢰시스템 구성부품 중 금속접속재의 성능시험 및 결과분석)

  • Lee, Ju-Cheol;Lee, An-Ki;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.7
    • /
    • pp.69-74
    • /
    • 2014
  • Recently, IEC published new standards about the requirements and tests for lightning protection system(LPS) components. If components are used for LPS, they should comply with the IEC standards. This paper, we collected six specimens for the metallic connection components using in domestic, and it tested for withstand lightning current which according to the IEC 62561-1. As a result, only one specimen meet this performance requirement. The specimen is the metallic connection component with four bolts fixed. Therefor, when designing of LPS in domestic, the metallic connection components shall be taken into account for the selection of the withstand lightning current. In addition, we need to develop for LPS components product and the national standards.

A Study on the Risk of Lightning in Special Structures and its Verification Method (특수 구조물의 낙뢰 위험도와 검증 방안에 관한 연구)

  • Yoo, Jeong Hyun;Kim, Hei Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.664-668
    • /
    • 2018
  • Free-standing structures that are especially high are more likely to receive brain attacks caused by lightning. Since special structures are generally part of national industrial structures, lightning strikes mostly cause socio-economic damage. Lightning protection facilities are installed to prevent such lightning damage, but in 2015, support cables on West Sea bridges were hit by lightning, causing a lot of economic damage. Accordingly, the design of a lightning protection system shall establish protective measures after analyzing the risk of debris falling onto the structure. In this thesis, lightning strikes are analyzed directly in relation to the modeling system that operates the actual information collection system for lightning strikes, depending on the location of the tall, free-standing structures, and practical lightning hazard information is provided by a meteorological station. In addition, we propose monitoring and applying a probability correction rate to the calculation of the lightning risk based on the number of lightning strikes directly reaching the ground in order to obtain an effective lightning risk assessment.

Insulation Design Standards for Protection of Power System against Lightning in Korea Electric Power Corporation (낙뢰로부터 전력설비 보호를 위한 한전의 절연설계 기준)

  • Woo, J.W.;Moon, J.D.
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.12
    • /
    • pp.555-560
    • /
    • 2006
  • As it has been reported that more than 60% of transmission line faults occurs due to lightning strokes, lighting is one of concerned issues in electric power utility company. Most of transmission line is double circuit in Korea. Double circuit outages account for 33.7 percent of total lightning faults from 1996 to 2004. Even though transmission fault might be cleared shortly by protective system, it could deteriorate the power quality accompanied with sag or flicker. Moreover, double circuit fault may lead to more aggravated situation, for instance, blackout. To Protect transmission lines from lightning stroke, reduction of tower footing resistance, multiple ground wires and unbalanced insulation in double circuit lines have been adopted. In this paper, we would like to introduce insulation design standards for lightning protection of Korea Electric Power Corporation.

A Protection Technique Against the Damages Caused by Lightning Surges on Information and Communication Facilities

  • Lee, Bok-Hee;Kang, Sung-Man;Ahn, Chang-Hwan
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.4
    • /
    • pp.117-122
    • /
    • 2003
  • The AC power lines and signal lines of info-communication networks are routed on overhead poles and are highly exposed to lightning strikes. Due to the potential difference between grounding points of AC power lines and signal lines, the electronic equipments connected to the signal lines can easily be damaged by lightning surges. In this work, in order to develop reliable methods of protecting information and communication facilities from lightning surges, the reliability and performance of SPDs (surge protective devices) were experimentally investigated in an actual-sized test circuit. The behaviors of SPDs against lightning surges from AC power lines and signal lines and the coordinated effects of SPD installation methods were evaluated. As a consequence, it was confirmed that the bypass arrester methods and common grounding system are both highly effective.

Lightning Protection of Signalling Equipments at Subway Car Depot by Equi-potential Bonding (지하철 차량기지에서의 등전위 본딩에 의한 신호시스템 낙뢰보호대책)

  • Seo, Seog-Chul;Choi, Kyu-Hyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.100-105
    • /
    • 2007
  • Signalling equipments at railroad sites are widely exposed to high voltage lightning surges. This paper presents a lightning protection system for the signalling equipments at subway car depots. The main features of the system are as follows : (1)the common grounding system between power system grounds and the signaling system grounds, (2)physical and chemical methods to reduce grounding resistivity, (3)rearrangement of lightning rods based on the rolling bal1 theory, (4)equi-potential bonding networks to minimize the potential differences between the equipments grounds. The system has been constructed at six subway car depots in Seoul metropolitan area and it is measured that the grounding resistivity are reduced to 0.266 ohms and the potential differences between devices are reduced to a negligible quantity. After the construction of the systems, it has not been reported the break-down of the signalling equipments caused by lighting surges.