• Title/Summary/Keyword: Lightning Surge

Search Result 291, Processing Time 0.026 seconds

Protecting electronic equipment against lightning surge (정밀기기의 낙뢰서지 대책에 관한 연구)

  • 임순재;이주광;이완규;최만용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.358-362
    • /
    • 1995
  • Precision electronic equipments are composed of sophisticated microcircuits that are extremely vulnerable to lightning-caused voltage spike. This transient voltage spike may cause upset, latent failure or interference on electronic equipments. In order to develop efficient lightning protection measures on AC power lines for a road traffic controller, experimental surge immunity tests were conducted according to IEC standard 801-5. The combination of gas tube arrester and metal-oxide varistor was installed at the input of AC power lines and the silicon avalanche suppressor installed at the output of DC power supply as lightning protection measures.

  • PDF

A Study on the Surge Analysis considering Surge Arrester and Grounding System in the Combined Distribution System (혼합 배전계통에서 피뢰기적용과 접지시스템 변경을 고려한 서지 해석에 관한 연구)

  • Yun, Chang-Sub;Lee, Jong-Beom;Kim, Beong-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.204-205
    • /
    • 2006
  • This paper describes the protective ability of lightning arrestor in combined distribution system with power cable. To evaluate the protective ability, change of arrestor and grounding location are considered. On the other hand, arrestor developed by Cooper Power Systems for underground power cable system, is considered to evaluate surge protective ability as in underground system, when arrestor occurs failure has overhead line. The result shows that lightning arrestor in combined distribution system with power cable protect effectively when failure at arrestor in overhead line. On the other hand, arrestor developed by Cooper Power Systems for underground power cable system, is considered to evaluate surge protective ability in underground distribution system, when arrestor of overhead line has failure. The result shows that lightning arrestor installed in underground cable can effectively protected cables from surge when arrestor of overhead line has failure. And also even though grounding locations are decreased, it is revealed that protective ability is nearly similar.

  • PDF

Survey of Damage Cases for Surge Protective Devices Installed Electrical Communication Systems and Analysis of Degradation Diagnosis Method (전자통신설비의 SPD 소손사례 및 열화진단기법 분석)

  • Lim, Jong-Wook;Lee, Jae-Young;Kwon, June-Hyuk
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.15-18
    • /
    • 2009
  • In recent years electric devices and telecommunication facilities were often damaged by surge generated lightning discharge. When the service was interrupted by failure of electrical devices due to surge the social loss is very enormous. Therefore in order to protect electrical systems against lightning, SPDs(Surge protective device) have been used But damaged SPDs often make some troubles like fire and interrupt of service. In this work, 3rd harmonic leakage current defection method was applied as the diagnosis of SPD degradation and the effectiveness of this method was verified by field survey.

  • PDF

Lightning Surge Response Characteristics of Non-tripping Type Earth Leakage Breakers for Impulse (충격파 부동작형 누전차단기의 뇌써지 응답 특성)

  • Lee, J.B.;Myung, S.H.;Cho, Y.G.;Chang, S.H.;Kim, J.S.;Kil, G.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1688-1690
    • /
    • 2002
  • The unpredictable threat of lightning surge is ever increasing in today's low-voltage power supplies. Thus Surge protection devices for AC mains are more widely used. The false-tripping of the earth leakage breaker (ELB) can be caused by the installation of surge protection devices with MOV. In order to examine the cause of malfunction, the malfunction characteristics of ELBs applied by lightning surge were investigated experimentally. As a result, all of them brought about malfunctions under 7 kV of the impulse voltage. The suitable position of MOV and use of zener diode were suggested to eliminate the problems.

  • PDF

Current Driving Type Surge Counter (전류구동형 서지카운터)

  • Lee, B.H.;Ahn, C.H.;Chang, S.H.;Jeong, K.M.;Jeon, D.K.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1712-1714
    • /
    • 1997
  • This paper deals with the surge counter drived by lightning and switching currents. In order to install the effective surge protective devices, it is important to find the parameters of incident surges. In this paper, for the purpose of protecting the electronic circuits and counting the occuring frequency, the current driving type surge counter is designed and fabricated. The surge counter consists of surge protective divices, current detector, metal oxide varistor(MOV), rectifier, capacitor, and electromagnetic counter. This surge counter is able to count the occuring frequency of surges and to clamp lightning surge current. To evaluate the performance of the surge counter, impulse voltage and current were applied at the surge counter by the surge generator. As a result, applied surges were exactly counted and clamped.

  • PDF

Analysis and Countermeasures for False-Tripping of Earth Leakage Breaker Due to Lightning Surge (누전차단기의 뇌써지 동작특성 분석 및 오동작 대책)

  • Lee, Jae-Bok;Myeong, Seong-Ho;Jo, Yeon-Gyu;Jang, Seok-Hun;Kim, Jeom-Sik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.10
    • /
    • pp.479-484
    • /
    • 2002
  • Recently it is reported that many a malfunction of ELB which is represented by non-operated type ELB for an impulse wave, is caused by lightning impulse and transient ground potential rise due to nearby lightning strokes. In order to examine the cause of malfunction, 5 samples were investigated experimentally in this study. As each ELB has a different leakage current detecting circuit and wiring method, various characteristics were measured. As a result, all of them brought about malfunctions under the lightning impulse voltage less than 7 kV and the surge current less than 3 kA. Also the different aspects were measured with a polarity of injected surge and a position of MOV to protect the inner circuit of ELB. The Position and effects of protecting devices were suggested as a remedy.

Characteristics of Lightning Overvoltages Coming in Low-Voltage Power Distribution Systems

  • Lee, Bok-Hee;Lee, Dong-Moon;Lee, Su-Bong;Jeong, Dong-Cheol;Lee, Jae-Bok;Myung, Sung-Ho
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.3
    • /
    • pp.91-98
    • /
    • 2003
  • The importance of improving the quality of electric power is being strongly raised, owing to an increasing use of sensitive and small-sized electronic devices and systems. The transient over-voltages on low-voltage power distribution systems are induced by direct or indirect lightning return strokes. These can cause damage and/or malfunction of the utility systems for home automation, office automation, factory automation, medical automation, etc. The behaviors of lightning overvoltages transferred through the transformer to the low-voltage distribution systems using a Marx generator were experimentally investigated. Furthermore, the coupling mechanisms of lightning overvoltages transferred to the low-voltage systems were clearly illustrated through a theoretical simulation using a Pspice program. The overvoltages in low-voltage ac power systems are rarely limited by the application of the surge arrester to the primary side of the distribution transformer. A superior surge protection scheme is to install surge protection devices at the service entrance switchboard and/or at the load devices in TN power systems.

Analysis on Lightning Overvoltage According to Lead Length of Surge Arrester for Underground Cable Outdoor Termination Protection at C/H Tower (C/H 철탑 종단접속함 보호용 피뢰기 리드선 길이에 따른 뇌과전압 분석)

  • Jung, Chae-Kyun;Kang, Ji-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.257-263
    • /
    • 2016
  • This paper describes the lightning arrester transients in cable head termination. The installation references of cable head tower and lightning arresters are firstly reviewed, then the performance of lightning arrester operation is also evaluated based on lightning overvoltage analysis by the change of grounding lead cable length. This paper finally proposes the optimal length of grounding lead cable at the cable head termination. The limited lightning current is also proposed according to the change of grounding lead cable length. The results will contribute to protecting insulation breakdown failure against lightning surge at the terminations and joints.

A Study on Development of Lightning and Surge Protection System for Electrical Fire Prevention (전기화재 예방을 위한 낙뢰 및 써지 보호시스템 개발에 관한 연구)

  • Kwak, Dong-Kurl
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.3 s.40
    • /
    • pp.27-32
    • /
    • 2006
  • The occurrence frequency of lightning and surge from the weather accident is increasing recently, which the damage scale have been enlarged every year. A protection system development to solve these problems have been risen to a multinational concern field. In this paper, a novel protection system is proposed to restrain lightning and various surges which happen in electricity and communication equipment. The proposed protection system is designed to the structure to restrain the rise of the earth potential which is become to the problem of conventional protection system. The secondary damage as a result does not happen. The practicality of the developed surge protection system is proved through various accident occurrence simulator.

  • PDF

A Lightning Surge Analysis of Testing Line for Protection of Underground Distribution Systems (지중배전계통 보호를 위한 모의시험선로 서지특성 해석)

  • Kim Byoung-Sung;Lee Jang-Geun;Lee Jong-Beom;Han Byong-Sook
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.8
    • /
    • pp.313-321
    • /
    • 2006
  • This paper describes the overvoltage obtained by surge behavior analysis in testing underground distribution systems. Model systems consist of overhead distribution line and underground cable. Such model system considered various characteristics of actual distribution systems will be soon constructed at testing yard. Simulation is carried out under various states such as cable kinds, cable length, lightning wave and time, and branch circuits. Model is established by EMTP/ATPDraw. Line Constants are calculated by ATP_LCC. When the direct lightning surge strikes on conductor of overhead line, the overvoltage is calculated using EMTP/ATPDraw in many cases. Simulation results will be compared with real testing results at testing yard in the near future. The compared results will be used to establish protection methods in actual underground distribution systems.