• Title/Summary/Keyword: Lightning Surge

Search Result 292, Processing Time 0.035 seconds

The Transient State characteristic and Consecutive Failure Analysis of The Offshore Wind Farm (낙뢰로 인한 해상풍력발전단지 과도상태 및 연계고장 분석)

  • Seo, Jin-Gyu;Kim, Kyu-Ho;Park, Sang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.239-240
    • /
    • 2015
  • This paper presents the transient state characteristic and single phase ground fault occurred by deterioration of surge arrester when offshore wind turbine is struck by lightning strike. The wind turbine and submarine cable data are based on the 2.5GW offshore wind farm planned in South Korea Southwest Seashore. During lightning strikes, additional ground fault can lead to damage of the generation components. So, the sensitive analyses are conducted in order to investigate the effects of lightning strike on offshore wind farm.

  • PDF

Transient impedance characteristics according to the injection position of deep-driven ground rods (심매설 접지전극의 전류인가위치에 따른 과도접지임피던스 특성)

  • Lee, Bok-Hee;Li, Feng;Lee, Su-Bong;Lee, Song-Zhu;Jeon, Byung-Wook;Eom, Ju-Hong;Cho, Sung-Chul;Lee, Tae-Hyung
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.297-300
    • /
    • 2008
  • This paper presents the behaviors of transient and conventional grounding impedances of a deep-driven ground rods associated with the injection point of lightning impulse currents. The transient impedance of deep-driven ground rods under lightning impulse currents were higher than the static ground resistance. The transient grounding impedances strongly depend on the injection point and size of grounding electrodes and the rising time of impulse current. Reduction of ground system inductance is an important factor to lightning surge protection.

  • PDF

A Simulation of Lightning Faults Reducing Effects on the 154 kV Transmission Tower by Auxiliary Grounding (보조접지선 시공에 의한 송전선로의 내뢰성 향상효과 모의)

  • Kwak, Joo-Sik;Shim, Jeong-Woon;Shim, Eung-Bo;Choi, Jong-Gi
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1843-1846
    • /
    • 1997
  • This paper describes the fault reducing effects of the 154 kV transmission tower by auxiliary grounding from the top of the tower to ground. The grounding surge impedance of the auxiliary grounding system is calculated by CDEGS(:Current Distribution Electromagnetic Interference Grounding and Soil Structure Analysis), and the critical lightning back flashover current and arcing horn dynamic characteristics are simulated by EMTP/TACS(:Electromagnetic Transient Program/Transient Analysis of Control Systems). The calculated results of total LFOR(Lightning Flashover Rate) shows that the LFOR can be reduced from 5.2(count/100km. year) to 3.4 by auxiliary grounding on the 154 kV transmission tower with one ground wire shielding system.

  • PDF

Effects of an Overhead Ground Wire and Surge Arrester in the Railway due to Lightning Strokes (전차선로에서의 뇌격에 의한 가공지선과 피뢰기의 차폐효과)

  • Rim, Seong-Jeong;Han, Byung-Duk;Oh, Jung-Hwan;Yun, Sang-Yun;Kim, Jae-Chul;Chung, Yong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.468-470
    • /
    • 1999
  • Using the EMTP(Electro Magnetic Transient Program) for the analysis of lightning direct voltage on the railway system, the shielding effects of overhead grounding wire on the railway were studied quantitatively. Installation of overhead ground wire and sap-type arrester such as s-horn provides a 6.6kV HV distribution line with goof protection effects. Even severe lightning induced voltage were create, 6.6kV HV lines can be withstand.

  • PDF

Analysis of characteristics for clamping voltage fellowing the application of element for preventing the short circuit of Metal Oxide Varistors for ZnO (ZnO 계열의 금속산화물 바리스터의 단락 방지용 소자 적용에 따른 제한전압 특성 분석)

  • Jeong, Tae-Hoon;Choi, Sung-Wook;Jeong, Je-Seon;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1531-1532
    • /
    • 2006
  • Recently, the natural environment changes drastically, and the frequency of occurrence for lightning has gradually been increased. Such lightning delivers high volume of energy along the power line and communication line to the equipment in use. The high volume of energy arising from the lightning surge develops in fast velocity to destroy the facilities in power source and many other facilities in operation in sequential destruction with vast energy. In this thesis, the analysis on the change of clamping voltage characteristics by the contact resistance and lead inductance by using several case studies through the application of element for preventing the short circuit of Metal Oxide Varistor for ZnO.

  • PDF

Propagation of Lightning Surges toward primary Side of Distribution Transformer (배전용 변압기 고압측으로의 뇌서지 전파)

  • 이복희;이수봉;김병근;이승칠;이동문;정동철
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.269-272
    • /
    • 2003
  • The importance of the improving quality of electric power is being strongly raised, owing to an increasing use of sensitive and small-sized electronic devices and system. The transient overvoltage on low-voltage AC power distribution system are induced by direct or indirect lightning return strokes, and those can cause damage and/or malfunction of the utility system for borne automation, office automation and factory automation as well as medical equipments. The behavior of lightning surge transferred to the primary side from the primary side in distribution transformers were experimentally investigated the protection effect of low voltage SPD installed at the secondary side of distribution transformers was analyzed.

  • PDF

Analysis for the impulsive impedance of counterpoise (매설지선의 임펄스임피던스의 해석)

  • Joe, Jeong-Hyeon;Kim, Jong-Ho;Beak, Young-Hwan;Kim, Dong-Seong;Lee, Gang-Su;Kim, Ki-Bok;Lee, Bok-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.88-91
    • /
    • 2009
  • For lightning currents, a grounding system shows the transient grounding impedance characteristics. A grounding system for protection against lightning should be evaluated by the transient grounding impedance, not it's ground resistance. The transient grounding impedance varies with the shape of ground electrode and earth characteristics as well as the waveform of lightning surge current. For the analysis and practical use of transient grounding impedance, the characteristics of transient grounding impedance should be analyzed theoretically and this paper suggests the theoretical analysis for the transient grounding impedance of counterpoise by using the distributed parameter circuit model. EMTP and Matlab are used to simulate the distributed parameter circuit model of counterpoise and the adequacy of the distributed parameter model of counterpoise is examined by comparing the simulated results with the measured results.

  • PDF

Impedance Analysis and Surge Characteristics of PV Array

  • Lee, Ki-Ok;So, Jeong-Hoon;Yu, Gwon-Jong;Park, Ju-Yeop
    • Journal of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.259-264
    • /
    • 2003
  • Photovoltaic (PV) array, which is generally installed outside, has the possibility of being damaged by high voltage due to lightning. primarily because the electrical characteristics of PV array have not been fully identified by lightning yet, there is a very important issue whether PV array should be connected with a ground or not. In this paper, a basic model of PV array is provided considering the PV cell's barrier capacitance and ground capacitance for analysis of electrical characteristics by lightning.

Design and Fabrication of a Surge Impedance Meter (서지임피던스 측정기의 설계 및 제작)

  • Kil, Gyung-Suk;Rhyu, Keel-Soo;Kim, Il-Kwon;Moon, Byung-Doo;Kim, Hwang-Kuk;Park, Chan-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.6
    • /
    • pp.645-649
    • /
    • 2007
  • Ground systems flow fault currents into the ground, and suppress Ground Potential Rise (GPR) by the current. In this paper, we designed and fabricated a surge impedance meter to analyze the ground impedance in wide frequency ranges. The meter consists of a surge generator, a high speed sample/hold (S/H) circuit and an associated electronics. The surge generator produces surge voltage up to 5kV in ranges of $50\sim500ns$. Field tests were carried out to evaluate the surge impedance meter at a driven-rod ground system. The results showed that surge impedance of ground systems should be measured by various fast surge waveforms, since the impedance increases as the rise time of applied voltage increases.

Analysis of the Protective Distance of Low-Voltage Surge Protective Device(SPD) to Equipment (저압용 서지 보호 장치(SPD)의 보호 거리 해석)

  • Lee, Jung-Woo;Oh, Yong-Taek
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.4
    • /
    • pp.28-34
    • /
    • 2012
  • Installing surge protection devices for a low-voltage system is important to ensure the survival of electric or electronic devices and systems. If surge protection devices (SPD) are installed without consideration of the concept of lightning protection zones, the equipment to be protected might be damaged despite the correct energy coordination of SPDs. This damage is induced by the reflection phenomena on the cable connecting an external SPD and the load protected. These reflection phenomena depend on the characteristics of the output of the external SPD, the input of the loads, and the cables between the load and the external SPD. Therefore, the SPD has an effective protection distance under the condition of the specific load and the specific voltage protection level of SPD. In this paper, PSCAD/EMTDC software is used to simulate the residual voltage characteristics of SPD Entering the low-voltage device. And by applying a certain voltage level, the effective protection distances of SPD were analyzed according to the each load and length of connecting cable, and the effectiveness of SPD were verified.