• Title/Summary/Keyword: Lightning Rate

Search Result 55, Processing Time 0.028 seconds

Lightning Characteristics and Lightning Rate Evaluation of Wind Farm by Lightning of Jeju Island for 2008-2012 (2008-2012년의 제주지역 낙뢰 특성 및 낙뢰에 의한 풍력단지 낙뢰율 평가)

  • Han, Ji-Hoon;Ko, Kyung-Nam;Huh, Jong-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.5
    • /
    • pp.60-68
    • /
    • 2013
  • This paper presents the characteristics of lightning over established and scheduled wind farms of Jeju island as well as over specific range of entire Jeju Island. The lightning data for 5 years from 2008 to 2012 was obtained from IMPACT ESP which detects lightning. Lightning frequency, lightning strength and regional lightning events were analyzed in detail, and then the lightning maps of Jeju Island were created. The evaluation of lightning rate was made for all the wind farms of this study. Damage to wind turbines by lightning was found in the existing wind farms. As a result, the eastern part of Jeju Island had more lightning frequency than the western part of the Island. Also, the evaluation of lightning rate was good for all established and scheduled wind farms of Jeju Island. Hankyung is the best place for lightning safety, while precaution should be taken against lightning damage in Kimnyung. Lightning damage to wind turbines occurred in Samdal and Haengwon wind farms, which had the first and the second highest lightning rate of the five existing wind farms.

A Study on the Statistical Analysis of Lightning Parameters by Lpats in Korea ('96~'98) (LPATS를 이용한 한반도 뇌격파라메터의 통계분포에 관한 연구('96~'98))

  • Woo, Jeong-Wook;Shim, Eung-Bo;Jung, Gil-Jo;Kim, Jung-Bu;Lee, Geon-Woong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.5
    • /
    • pp.310-314
    • /
    • 2000
  • To study the basic research of the lightning parameters for power system operation, LPATS(Lightning Positioning and Tracking System) has been introduced since 1995 in KEPCO(Korea Electric Power Corporation). We have developed the lightning parameters analysis program which can produce accumulative magnitude distribution of lightning current and IKL map by LPATS data. We obtained the various statistical distributions of lightning current parameters since 1996 by the lightning analysis program for the pertinent insulation design. In this paper, we describe the LPATS system in KEPCO, the statistical distribution of lightning current parameters and the IKL(Isokeraunic Level) map from 1996 to 1998. And the compared results between the calculated LFOR(lightning flashover rate) and the observed rate are also described.

  • PDF

New Simulation Method of Flashover Rate by Connection of EMTP and MATLAB

  • Seo, Hun-Chul;Han, Joon;Choi, Sun-Kyu;Lee, Byung-Sung;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.602-608
    • /
    • 2016
  • Because of the random characteristics of lightning, the Monte Carlo method is applied to estimate the flashover rate due to lightning, however, the simulations using previous methods are difficult to both beginner and expert in power corporations. Therefore, this paper proposes the new and easy method to simulate the flashover rate by connection of electromagnetic transients program (EMTP) and MATLAB. The magnitude of a lightning strike is based on a curve measured in the field, while the classification of direct and indirect lightning depends on the striking distance. In a Korean distribution system, the flashover rate induced by lightning is simulated using proposed method. Simulations of the footing resistance according to the existence of an overhead ground wire (OHGW) are performed and the simulation results are discussed. The simulation results are compared with findings obtained with the IEEE Flash 2.0 program.

Analysis of Flashover Rate by Lightning in Korea Distribution Line using CRIEPI Method (CRIEPI 방식을 이용한 국내 가공 배전선로에서의 뇌 섬락률 산정)

  • Choi, Sun-Kyu;Seo, Hun-Chul;Han, Jun;Kim, Chul-Hwan;Lee, Byung-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • This paper analyzes the flashover rate by lightning in Korea distribution system. Because of random characteristics of lightning, the Monte Carlo method is applied to estimate the lightning performance. The magnitude of lightning stroke is based on the curve measured in field. The classification of direct and indirect lightning depends on the striking distance. The striking distance and flashover rate are calculated by using the method based on Central Research Institute of Electric Power Industry(CRIEPI). The distribution system and lightning is modeled by using EMTP and MATLAB, and the accuracy of modeling is discussed. The simulations for the various spacing between two adjacent surge arresters and the various grounding resistance of GW according to the existence of GW are performed and the simulation results are analyzed.

The Calculation of Lightning Flashover rate of 345kV/154kV Transmission Tower (345kV 및 154kV 송전철탑의 뇌사고율 예측계산)

  • Shim, E.B.;Woo, J.W.;Kwak, J.S.;Min, B.W.;Hwang, J.I.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.452-454
    • /
    • 2001
  • This paper described the calculation results of lightning flashover rate on the 345kV and 154kV transmission system of KEPCO. The back-flashover rate and shielding failure rate was calculated by FLASH(lightning flashover rate calculation program from IEEE) and KEPRI's own program which is based on the EGM(Electro Geometrical Model) method. The estimated lightning flashover late of 345kV transmission system of double circuit was 1.0 flash per 100km-year, and the lightning flashover rate of 154kV transmission line was 2.0 flash Per 100km-year approximately.

  • PDF

Review about the Lightning Protection System for Ground Facilities of Anti-aircraft Weapons System (뇌 보호시스템의 대공무기체계 지상시설 적용에 대한 고찰)

  • Jung, Kyoungwook;Shim, Donghyouk;Son, Donghyeop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.339-347
    • /
    • 2021
  • Recently, the incidence of lightning in Korea has been increasing more and more. The damage caused by lightning is also getting worse. Lightning protection system is a prerequisite, not a sufficient condition. Considering the characteristics of lightning, there is a high frequency of lightning strikes in highlands. So, high grades of LPS should be applied to ground facilities of anti-aircraft weapons systems. 4-Level LPS was applied on groung facilities of anti-aircraft weapons system based on lightning incidence rate in past. There are some possibilities of damage from lightning in anti-aircraft weapons system. So, we have to readjust the LPS level with grounding, lightning rods and surge protect device based on lightning incidence rate in now days. Propose 2-level LPS and design with lightning rods, surge protector, separated grounding in this paper.

Analysis of Effect on Lightning Surge according to the Grounding Condition of Overhead Ground Wire in Distribution System (국내 배전계통의 가공지선 접지조건에 따른 뇌서지 영향 분석)

  • Han, Joon;Kim, Chul-Hwan;Seo, Hun-Chul;Choi, Sun-Kyu;Lee, Byung-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.331-337
    • /
    • 2014
  • The Korean distribution system consists of overhead ground wire (OHGW), phase conductors and neutral wire. Especially, OHGW is installed over the phase conductors to protect distribution system from the lightning surge. The flashover rate and the magnitude of lightning overvoltage on distribution system can be affected by grounding condition of OHGW such as grounding resistance and grounding interval. In this paper, we conduct an analysis of lightning overvoltage and flashover rate according to the grounding condition of OHGW. The distribution system and lightning surge are modeled by using ElectroMagnetic Transient Program (EMTP). Also, the Monte Carlo method is applied to consider random characteristics of lightning, and the flashover rate is calculated based on IEEE std. 1410. The simulations are performed by changing the grounding resistance and interval of OHGW and the simulation results are analyzed.

A Comparative Study on Lightning Characteristics and Lightning Damage to Wind Turbines of Jeju and Gangwon Region (제주와 강원 지역의 낙뢰특성 및 풍력발전기의 낙뢰피해 비교 연구)

  • Yang, Dal-Seung;Kim, Kyoung-Bo;Ko, Kyung-Nam
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.137-143
    • /
    • 2014
  • An investigation on lightning characteristics and damage to wind turbines was performed on Jeju and Gangwon regions. The lightning data from January 2010 to September 2013 detected by IMPACT ESP were collected and analyzed in detail. Hangyeong and Seongsan wind farms of Jeju province and Taebaek, Changjuk, Taegisan and Gangwon wind farms of Gangwon province were selected for this study. Lightning rates and lightning damage events at the six wind farms were compared with each other. Lightning maps for the two regions were drawn using lightning frequency data. As a result, lightning frequency of Gangwon region was higher than that of Jeju region, while lightning strength of Gangwon was weaker than that of Jeju. Lightning rates were assessed to be good for all of the six wind farms. No lightning damage to wind turbines occurred at the two wind farms of Jeju, while some lightning damage to wind turbines took place at the four wind farms of Gangwon.

A study on the Unbalanced Insulation of the Double Circuit 154 kV Transmission Lines to Reduce Lightning Failure Rate (뇌사고율 저감을 위한 154 kV 송전선의 차등절연 적용 방안 연구)

  • Kwak, J.S.;Kang, Y.W.;Woo, J.W.;Shim, E.B.;Kim, W.G.
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.151-159
    • /
    • 2003
  • According to the records, approximately 50 percent of power failure were caused by lightning. Conventional fault preventive measures against lightning include reduction of the footing resistance of the tower, multiplication of overhead ground wires and unbalanced insulation of the double circuit transmission tower. In addition to these, transmission line arresters have been recently appeared as an alternatives. In this paper an unbalanced insulation method with transmission line arrester was assumed as another countermeasure against simultaneous double circuit trip of 154 kV transmission line by lightning strike. The lightning performance of line arrester was compared with conventional insulation concept using different numbers of porcelain and glass insulator. Larger numbers of insulator simply increase flashover current level by lightning but the lightning performance doesn't proportional to it. EMTP simulation and predictive calculation of lightning failure rate were carried out to evaluate the performance.

  • PDF

The Development of Lightning Outage Rate Calculation Program (송전선로 뇌 사고율 예측계산 프로그램 개발)

  • Kang, Yeon-Woog;Shim, Eung-Bo;Kweon, Dong-Jin;Kwak, Ju-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.10
    • /
    • pp.118-125
    • /
    • 2008
  • The outages of transmission lines give big damages to the industrial world Lightning outages occupy above 50[%] among the outages of transmission lines. To decrease the lightning outage rates, it is necessary to try countermeasures considering economical points. For the lightning protection of power transmission lines, it is very important to accurately predict the lightning outage rate because the reliability criterion for transmission line is normally specified as the number of flashovers per 100[km] per year. The phenomenon of an insulator flashover by a lightning stroke is a very complex electromagnetic event. And to calculate the lightning outage rates of transmission lines, so many calculation should be repeated because there are many overhead lines and power lines. Therefore it is necessary to develope a program for it. In this paper, we briefly introduce the basic concept for lightning outage calculation algorithm and the program.