• Title/Summary/Keyword: Lighting Simulation Software

Search Result 53, Processing Time 0.024 seconds

Exhibition Hall Lighting Design that Fulfill High CRI Based on Natural Light Characteristics - Focusing on CRI Ra, R9, R12 (자연광 특성 기반 고연색성 실현 전시관 조명 설계 - CRI Ra, R9, R12를 중심으로)

  • Ji-Young Lee;Seung-Teak Oh;Jae-Hyun Lim
    • Journal of Internet Computing and Services
    • /
    • v.25 no.4
    • /
    • pp.65-72
    • /
    • 2024
  • To faithfully represent the intention of the work in the exhibition space, lighting that provides high color reproduction like natural light is required. Thus, many lighting technologies have been introduced to improve CRI, but most of them only evaluated the general color rendering index (CRI Ra), which considers eight pastel colors. Natural light provides excellent color rendering performance for all colors, including red and blue, expressed by color rendering index of R9 and R12, but most artificial lighting has the problem that color rendering performance such as R9 and R12 is significantly lower than that of natural light. Recently, lighting technology that provides CRI at the level of natural light is required to realistically express the colors of works including primary colors but related research is very insufficient. Therefore this paper proposes exhibition hall lighting that fulfills CRI with a focus on CRI Ra, R9, and R12 based on the characteristics of natural light. First reinforcement wavelength bands for improving R9 and R12 are selected through analysis of the actual measurement SPD of natural and artificial lighting. Afterward virtual SPDs with a peak wavelength within the reinforcement wavelength band are created and then SPD combination conditions that satisfy CRI Ra≥95, R9, and R12≥90 are derived through combination simulation with a commercial LED light source. Through this, after specifying two types of light sources with 405,630nm peak wavelength that had the greatest impact on the improvement of R9 and R12, the exhibition hall lighting applied with two W/C White LEDs is designed and a control Index DB of the lighting is constructed. Afterward experiments with the proposed method showed that it was possible to achieve high CRI at the level of natural light with average CRI Ra 96.5, R9 96.2, and R12 94.0 under the conditions of illuminance (300-1,000 Lux) and color temperature (3,000-5,000K).

A Study on Simulation of Daylight for Reducing Glare of the Lecture Room's Front Side in University (대학강의실 전면현휘 감소를 위한 주간채광유입 시뮬레이션에 관한 연구)

  • Jeong, Ji-Seok
    • Journal of the Korean housing association
    • /
    • v.24 no.3
    • /
    • pp.1-8
    • /
    • 2013
  • The University students learn their major or a general education in lecture rooms. In these days, lecturer use frequently various multimedia in lecture room. Appropriate control lighting environment in lecture room should be essential and related in efficient studying. Daylighting on front-side of lecture room will cause glare and students are hard to read contents on white-board at their seat. Therefore, in order to preventing glare we simulated daylighting of lecture room with using computer software in this study. Results from simulation and analysis as follows: The first, if students' left-side is east-oriented in lecture room, best daylighting condition about glare in lecture room. The second, architectural designers can use simulation data of daylighting or simulate data in designing university buildings with lecture rooms. Finally, if reducing size of windows (narrow and deep daylight: more closing vertically, from up to down daylighting: more closing horizontally) we will be able to reduce energy from lecture room.

A Study of Clothing Design in the Digital Age (디지털 시대의 의상 디자인 개발에 관한 연구)

  • 배리사;이인성
    • Journal of the Korean Society of Costume
    • /
    • v.54 no.4
    • /
    • pp.63-74
    • /
    • 2004
  • This study shows that clothes to be just the same as the real thing can be Produced through the third dimension computer graphics, and then presents that not only the area of fashion design can be expanded in the virtual reality field by doing the simulation of the fashion show, but also the information can be made the real time public ownership and the communication can be fulfilled smoothly. In this study, analyzing the third dimension computer graphic programs to be used much at present, Alias Wavefront Company's Maya software which was the most effective in the clothes simulation and the clothes CAD SGS OptiTex 8.7 which went well substitutive for it were used of them. The conclusions of this study that got through the work manufacture are as follows: The first, if the file manufacturing in the clothes CAD by using the computer was stored, the pattern used 3D simulation was available because it could be summoned in 3D software. The second, if the data of DXF form in Maya program was summoned, they could not be applied by Maya Cloth supported in Nurbs only because they were recognized as the DXF_layer. So the curve along the outer lines of the pattern was drawn and Maya Cloth was applied to be possible to get the natural silhouette of clothes. The third, when the clothes were manufactured by 3D, if the draping character was applied according to the textile special quality, not only the control of textile's thickness, weight, quality feeling, and silhouette was available, but also the clothes were available to graft the special textile materials. The fourth, the natural motion of model was produced by capturing the actual model's walking action In order to produce the fashion show motion and also the dynamic fashion show was available by the angle of camera, the establishment of lighting, and etc. in the final rendering. The clothes manufactured by 3D are available to change the design by changing the materials, or by adding the details, or by utilizing the special materials on clothes. Therefore, the trial and error following at the clothes manufacture can be reduced. But the elevation of the rendering speed, the price down, the strengthening of personal security, and etc. are required.

Electromagnetic Radiation Properties of Electrodeless Fluorescent Lamps (무전극 형광램프의 전자계 방사 특성)

  • Lee, Jong-Chan;Park, Dae-Hee;Kim, Kwang-Soo;Ham, Hum;Park, Sung-Mok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.931-934
    • /
    • 2002
  • In recent year there have been several developments in lamp technology that promise savings in electrical power consumption and improved quality of the lighting space. Above all, the advantage of Electrodeless fluorescent lamp is the removal of internal electrodes and heating filaments that are a light-limiting factor of conventional fluorescent lamps. Therefore, the life of Electrodeless fluorescent lamps is substantially higher than that of conventional fluorescent lamps and last up to 100,000 hours. In this paper, the Electromagnetic emitting properties were presented by simulation software operated at 2.65MHz and some specific conditions.

  • PDF

Analysis of Optical and Electromagnetic Distribution of Ring-shaped Electrodeless Fluorescent Lamps (환형 무전극 램프의 광학적, 전자계적 해석)

  • 조주웅;최용성;김용갑;박대희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.4
    • /
    • pp.460-464
    • /
    • 2004
  • In recent, there have been several developments in lamp technology that promise savings in electrical power consumption and improved quality of the lighting space. Above all, the advantage of ring-shaped electrodeless fluorescent lamp is the removal of internal electrodes and heating filaments that are a light-limiting factor of conventional fluorescent lamps. Therefore, the life time of ring-shaped electrodeless fluorescent lamps is substantially higher than that of conventional fluorescent lamps and last up to 60,000 hours and is intended as a high efficacy replacement for the incandescent reflector lamp in many applications. In this paper, maxwell 3D finite element analysis program (Ansoft) was used to obtain electromagnetic properties associated with the coil and nearby structures. The electromagnetic emitting properties were presented by D simulation software operated at 250KHz and some specific conditions. Photometric characteristic of the ring-shaped electrodeless fluorescent lamp were investigated using LS-100 lightmeter and TA-0510 thermometer respectively.

Electromagnetic Field Distribution of Electrodeless Fluorescent Lamps (무전극 형광램프의 페라이트 특성변화에 따른 전자계 분포)

  • 김광수;이영환;조주웅;최용성;박대희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.2
    • /
    • pp.79-82
    • /
    • 2004
  • The RF inductive discharge or inductively coupled plasma (ICP) continues to attract growing attention as an effective plasma source in many industrial applications, the best known of which are plasma processing and lighting technicology. Although most practical ICP operate at 13.56 [MHz]and 2.65 [MHz], the trend to reduce the operating frequency is clearly recognizable from recent ICP developments. In an electrodeless fluorescent lamp, the use of a lower operating frequency simplifies and reduces cost of rf matching systems and rf generators and can eliminate capacitive coupling between the inductor coil and plasma, which could be a strong factor in wall erosion and plasma contamination. In this study, the configuration of ferrite and fixture which operates at the frequency of 2.65[MHz]was discussed as functions of the ferrite thickness and distance by using the electromagnetic simulation software (Maxwell 2D).

Analytic Study on the Design Elements for Energy Conservative Green-Home Prototyping (에너지 저감형 그린홈 프로토타이핑을 위한 설계요소 분석 연구)

  • Kim, Jung-Eun;Chang, Seong-Ju;Ha, Mi-Kyoung;Sung, Hae-Yoen;Kim, Kyung-Wan
    • KIEAE Journal
    • /
    • v.11 no.4
    • /
    • pp.63-70
    • /
    • 2011
  • In respond to the global energy crisis and climate change, there have been many ongoing national efforts to develop a sustainable housing prototype followed by "2 million Green Home Project" in Korea. More than 50% of nation's population are currently living in apartment housing thus the country is seriously in need of developing green apartment prototype. In this research, we focused on energy-conservative green apartment design prototype that have both passive components and active systems explored in a systemic design approach. After selecting an existing basic apartment unit, we analyzed and compared statistical data with the simulated annual energy consumption to match these two data sets for validating simulation accuracy performed with TRNSYS package. We performed energy simulations with different passive design factors such as varied insulation thickness, window types and infiltration rates as well as the active design factors including boilers and lighting fixtures to analyze their impacts on the energy performance of the housing unit using TRNSYS software. As a result, we acquired significant energy reduction effect with explored design strategies but the life cycle cost analysis for the final design guidline would need to be performed. In this study, we focused on a systematic comparative energy analysis based on TRNSYS that can improve the design of a green apartment housing.

Combination of Brain Cancer with Hybrid K-NN Algorithm using Statistical of Cerebrospinal Fluid (CSF) Surgery

  • Saeed, Soobia;Abdullah, Afnizanfaizal;Jhanjhi, NZ
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.120-130
    • /
    • 2021
  • The spinal cord or CSF surgery is a very complex process. It requires continuous pre and post-surgery evaluation to have a better ability to diagnose the disease. To detect automatically the suspected areas of tumors and symptoms of CSF leakage during the development of the tumor inside of the brain. We propose a new method based on using computer software that generates statistical results through data gathered during surgeries and operations. We performed statistical computation and data collection through the Google Source for the UK National Cancer Database. The purpose of this study is to address the above problems related to the accuracy of missing hybrid KNN values and finding the distance of tumor in terms of brain cancer or CSF images. This research aims to create a framework that can classify the damaged area of cancer or tumors using high-dimensional image segmentation and Laplace transformation method. A high-dimensional image segmentation method is implemented by software modelling techniques with measures the width, percentage, and size of cells within the brain, as well as enhance the efficiency of the hybrid KNN algorithm and Laplace transformation make it deal the non-zero values in terms of missing values form with the using of Frobenius Matrix for deal the space into non-zero values. Our proposed algorithm takes the longest values of KNN (K = 1-100), which is successfully demonstrated in a 4-dimensional modulation method that monitors the lighting field that can be used in the field of light emission. Conclusion: This approach dramatically improves the efficiency of hybrid KNN method and the detection of tumor region using 4-D segmentation method. The simulation results verified the performance of the proposed method is improved by 92% sensitivity of 60% specificity and 70.50% accuracy respectively.

Design of Optical System for LED Lamp using MR16 (MR16용 LED 램프 조명설계)

  • Kim, Jun-Hyun;Moon, Byung-Kwon;Ryu, In-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4725-4732
    • /
    • 2012
  • This paper studies MR16 that can strengthen the strength and make up for the weakness of MR16 by replacing halogen light source using multifaceted Reflector(MR16) with LED light source. To achieve this, developed MR16 for LED applying optical system that four aspheric lens is one sheet. Optical system is designed by optics software and lighting performance of the designed data is predicted lighting simulation program. Also, heatsink's heat radiation analysis program to predict the thermal performance. Finally, optical prototype system based on simulation analysis data is manufactured and the results comparing performance of the developed system and the designed data are follows: Radiation angle was around $50^{\circ}{\sim}60^{\circ}$ in results of simulation analysis and the test of the prototype system. Also, temperature measurement result indicates that the thermal equilibrium is realized after one minute and thirty seconds and heat is generated up $60^{\circ}C$ in all of simulation analysis and the test of the prototype system. Finally, simulation analysis result on light disturbance curve of MR16 is similar to that of performance of the prototype system.

TheMagneticFieldDistributionAnalysisandOpticalCharacteristicsfortheRing-ShapedElectrodelessFluorescentLamp. (환형무전극형광램프의자계분포해석과광학적특성에관한연구)

  • Jo Ju-Ung;Lee Jong-Chan;Choi Yong-Sung;Kim Yong-Kap;Park Dae-Hee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.6
    • /
    • pp.255-261
    • /
    • 2005
  • Recently, the RF inductive discharge or inductively coupled plasma continues to attract growing attention as an effective plasma source in many industrial applications, the best known of which are plasma processing and lighting technology. To the point of lighting sources, the ring-shaped electrodeless fluorescent lamps utilizing an inductively coupled plasma have been objects of interest and research during the last decades, mainly because of their potential for extremely long life, high lamp efficacies, rapid power switching response. In this paper, maxwell 3D finite element analysis program (Ansoft) was used to obtain electromagnetic properties associated with the coil and nearby structures. The electromagnetic emitting properties were presented by 3D simulation software operated at 250 kHz and some specific conditions. The electromagnetic field in the ferrite core was shown to be high and symmetric. An LS-100 luminance meter and a Darsa-2000 spectrum analyzer were used in the experiment. According to data on the lamp tested using high magnetic field ferrite, the optical and thermal wave fields were shown to be high around the ring-shaped electrodeless fluorescent lamp. The optical or light field was high at the center of the bulb rather than around the ferrite core. The light conditions of the bulb were assumed to be complex, depending on the condition of the filler gas, the volume of the bulb, and the frequency of the inverter. Our results have shown coupling between the gas plasma and the field of the light emitted to be nonlinear.