• Title/Summary/Keyword: Light-weight material

Search Result 586, Processing Time 0.024 seconds

Study of Frequency Response Characteristics in Microphone Used by Optical Sensor

  • Yeom, Keong-Tae;Kim, Kwan-Kyu;Kim, Yong-Kab
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.3
    • /
    • pp.128-133
    • /
    • 2008
  • In this paper, in order to analyze property of frequency response in microphone using optical sensor, acousto-optic sensor system has been implemented. The capacitance microphone and fiber-optic transmission path type fiber-optic microphone (FOM) have weaknesses in directivity, size, weight, and price. However suggested optical microphone can be constituted by cheap devices, so it has many benefits like small size, light weight, high directivity, etc. Head part of optical microphone which is suggested in this paper is movable back and forth by sound pressure with the attached reflection plate. Operating point has also been determined by measuring the response characteristics. The choosing the point, which has maximum linearity and sensitivity has changing the distance between optical head and vibrating plate. We measured the output of the O/E transformed signal of the optical microphone while frequency of sound signal is changed using sound measurement /analysis program, "Smaart Live" and "USBPre", which are based on PC, and compared the result from an existing capacitance microphone. The measured optical microphone showed almost similar output characteristics as those of the compared condenser microphone, and its bandwidth performance was about 4 kHz at up to 3 dB.

A Study on Light Weight Hood Design for Pedestrian Safety (보행자 충돌안전 경량후드 형상설계에 관한 연구)

  • Lee, Won-Bae;Kang, Sung-Jong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.106-115
    • /
    • 2007
  • In this study, first, child headform model was built up, satisfying requirement in the headform validation test. Also, for decreasing both acceleration peak and deformation, a new hood with dome shaped forming in inner panel was investigated. Next, headform impact, complying with draft of EEVC W/G 17, on the central portion of the newly proposed hood were simulated for a steel hood and three aluminum hoods with different thickness for examining the material and thickness effect on HIC value and inner panel deformation. The analysis results explained that aluminum hoods with dome shaped forming in inner panel were highly promising not only for meeting headform safety regulations but also for leading to weight savings. Finally, hood edge design technology in order to reduce pedestrian injury due to the high stiffness of beam type edge and the rigid support, was discussed. Various types of the foam filled edge were designed and their headform safety performance were evaluated. The edge structure with foam filled in upper one third of section exhibited excellent results.

Analysis and Design of Composite Ladder for Pilot (조종사 탑승용 복합재 사다리 설계)

  • Kim, Tae-Hwan;Kim, Wie-Dae
    • Composites Research
    • /
    • v.32 no.2
    • /
    • pp.108-112
    • /
    • 2019
  • There has been a continuous study on the weight reduction of structure by composites. Unlike isotropic materials, the physical properties of composites vary according to the direction of laminate and the order of lamination. Therefore, in the case of composite ladders, it is essential to perform structural analysis to verify the planned design. In this study, ladder was designed by applying fabric material. In addition, the effect of loading position on the ladder was analyzed through finite element analysis, and structural performance was analyzed by selecting the most problematic location. We analyzed the effect of stacking order on the structural strength of the ladder by analyzing the structure by applying various stacking sequence and measuring the failure value in each layer.

Improved of Mechanical Properties and Functionalization of Polycarbonate by Adding Carbon Materials (탄소재료 첨가에 의한 Polycarbonate의 기계적 물성 향상 및 기능화에 관한 연구)

  • Kim, Jeong-Keun;Choi, Sun-Ho;Go, Sun-Ho;Kwac, Lee-Ku;Kang, Sung-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.59-67
    • /
    • 2020
  • Polycarbonate thermoplastic composite materials are anisotropic and exhibit physical properties in the longitudinal direction. Therefore, the physical properties depend on the type and direction of reinforcements. The thermal conductivity, electrical conductivity, and resin impregnation can be controlled by adding carbon nanotubes to polycarbonate resin. However, the carbon fiber used as a reinforcing material is expensive, interfacial adhesion issues occur, and simulation values are different from actual values, making it difficult to perform mathematical analysis. However, carbon nanotubes have advantages such as light weight, rigidity, impact resistance, and reduced number of parts compared to metals. Due to these advantages, it has been applied to various products to reduce weight, improve corrosion resistance, and increase impact durability. As the content of carbon nanotubes or carbon fibers increases, the mechanical properties and antistatic and electromagnetic shielding performance improve. It is expected that the amount of carbon nanotubes or carbon fibers can be optimized and applied to various industrial products.

A study on the design for the road bike frame made by carbon fiber materials (나노탄소섬유소재(Carbon fiber)를 활용한 로드형 자전거에서의 프레임 디자인 개발에 관한 연구)

  • Kim, Ki-Tae;Kim, Hyun-Sung;Kang, Seung-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.4
    • /
    • pp.178-185
    • /
    • 2017
  • Carbon fiber frames are actively developed for developing carbon fiber frames as the material of the next generation of bicycle frames, and are currently being developed with carbon fiber frames, hardness, shock absorption, light intensity, and strength. The carbon fiber bike models require a premium, differentiated design concept, which is essential to the development of a conceptual and differentiated design, requiring the development of essential structural structures, safety and refinement, and more of their own identity. In this study, a personal and unified image was derived from the research of the needs of consumers and image analysis process and then in the practical design work, the road bike bicycle frame design was proposed targeting the frame on the basis of carbon fiber materials.

Process and Die Design of Square Cup Drawing for Wall Thickening (사각형 판재성형 시 벽두께 증육을 위한 금형 및 공정 설계)

  • Kim, Jinho;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.5789-5794
    • /
    • 2015
  • Recently, thin and light-weight production technologies are needed in IT industry in accordance with increase of the smart phones and mobile PC products. In order to make light and high rigidity products, engineering plastic and aluminum materials are frequently used in products appearance and frame hat support structure. Especially aluminum extrusion and CNC Brick processes are widely used for high strength and high rigidity technology. But extrusion method has constraints to apply exterior design and CNC Brick process has relatively high production cost and low speed of manufacturing. In this research, a new process method is introduced in order to reduce material cost and to improve manufacturing speed dramatically. Plate forging process means basically that thickening of local wall area thickness after deform exterior shape by deep drawing and bending process. Therefore, it is possible to minimize the waste of material and the manufacturing time. In this study the process of plate forging is designed using finite element program AFDEX-2D and the thickness and the width of initial deformed blank. And it is verified as a sample which is a part of laptop developed through the proposed plate forging method.

A Study on the Characteristics and Utilization of Ash from ASR Incinerator (ASR 소각재의 이화학적 물성 및 재활용(再活用)을 위한 기초연구(基礎硏究))

  • Lee, Hwa-Young
    • Resources Recycling
    • /
    • v.16 no.2 s.76
    • /
    • pp.32-39
    • /
    • 2007
  • The measurement of physicochemical properties of ASR incineration ash has been carried dot and the preparation of light-weight material has also been performed using ASR ash for recycling point of view as building or construction materials. For this aim, chemical composition, particle size distribution, and heavy metal leachability were examined for 2 bottom ashes and 4 fly ashes obtained from the domestic ASR incinerator. In the present work, attempt has been made to prepare the lightweight material using boiler ash as a raw material, which is prepared by forming the mixture of boiler ash, lightweisht filler and inorganic binder and followed by calcination at elevated temperature. As a result, the content of Cu in bottom ash was as high as about 3wt% so that the recovery of Cu from ash was required. The major compound of SDR #5 and Bag filter #6 was found to be $CaCl_2{\cdot}Ca(OH)_2{\cdot}H_2O\;and\;CaCl_2{\cdot}4H_2O$, respectively. It is thought that heavy metal teachability of lightweight material prepared with boiler ash was significantly decreased due to the encapsulation or stabilization of heavy metal compounds.

Performance Evaluation of Carbon-Reducing Soil Pavement using Inorganic Binder (무기계 바인더를 이용한 탄소저감형 흙포장의 성능평가)

  • Yoo, Ji Hyeung;Kawk, Gi Bong;Kim, Dae Sung
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.19-26
    • /
    • 2015
  • PURPOSES : This study intends to develop an inorganic soil pavement material using industrial by-products and to evaluate its applicability as a road pavement material. METHODS : In this study, a compressive strength experiment was conducted based on the NaOH solution molarity and water glass content to understand the strength properties of the soil pavement material according to the mixing ratio of alkali activator. In addition, the strength characteristic of the inorganic soil pavement material was analyzed based on the binder content. The performance of the soil pavement was evaluated by conducing an accelerated pavement test and a falling weight deflectometer (FWD) test. RESULTS : As a result of the soil pavement material test based on the mixture ratio of alkali activator, it was identified that the activator that mixed a 10 M NaOH solution to water glass in a 5:5 ratio is appropriate. As a result of the inorganic soil pavement materials test based on the binder content, the strength development increased sharply when the amount of added binder was over 300 kg; this level of binder content satisfied 28 days of 18 MPa of compression strength, which is the standard for existing soil pavement design. According to the measured results of the FWD test, the dynamic k-value did not show a significant difference before or after the accelerated pavement testing. Furthermore, the effective modulus decreased by approximately 50%, compared with the initial effective modulus for pedestrian pavement. CONCLUSIONS : Based on these results, inorganic soil pavement can be applied by changing the mixture proportions according to the use of the pavement, and can be utilized as road pavement from light load roads to access roads.

High Strain Rate Tensile Test of Composite Material for Automotive Front End Module Carrier (자동차 프론트엔드모률 캐리어용 경량 복합소재의 고속인장 시험)

  • Kang, Woo-Jong;Kim, Sung-Tae
    • Composites Research
    • /
    • v.24 no.3
    • /
    • pp.12-16
    • /
    • 2011
  • High strain rate tensile tests were performed to measure the strain rate sensitivity of fiber reinforced composite material. The composite material was developed for the light weight design of an automotive FEM(front end module) carrier. Standard specimens for quasi-static tests of fiber reinforced composites can be found in ASTM D3039. However, in case of high strain rate tests, it was hard to find standard specimen shapes. In this study, three kinds of tensile specimens designed based on ASTM D638 were investigated to determined the adequate gauge width of tensile specimen for fiber reinforced composite. A drop tower type of high speed tensile apparatus was developed for strain rates of about 15/s and 100/s. Gauge width of 6mm, 8mm and 10mm were investigated. Test results showed the specimen of 8mm width was adequate for the high strain rate tensile tests of fiber reinforced composite. It was found the strength of the composite material increased as the strain rate increased.

Evaluation of Physical Properties of Material Combination for Fabricating Protection Pads for Women's Army Combat Uniforms (여군 전투복 내 관절 부위 보호 패드 개발을 위한 설계 변인 조합에 따른 물성 평가)

  • Okkyung Lee;Heeran Lee;Soyoung Kim;Yejin Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.2
    • /
    • pp.311-322
    • /
    • 2023
  • In this study, the properties of various material combinations were evaluated and an ideal material for fabricating protection pads for women's army combat uniforms was determined. Eight specimens were used for the evaluation: two types of materials, namely thermoplastic polyurethane for 3D printing, T and ethylene-vinyl acetate, E; two infill densities, namely 10%, 10 and 30%, 30; two types of pad designs, i.e., without holes, A and with holes, B; 2×2×2=8 and control E. The tensile strength, flexural strength, impact absorption, and weight of these specimens were evaluated. Results revealed that E was the most flexible material; however, its tensile strength and impact absorption were very low. Protection pads made from T (T-10A, T-10B, T-30A, and T-30B) had excellent tensile strength and impact absorption; however, they had low performance in ease of movement. Alternatively, protection pad with holes and an infill density of 30% produced using a combination of T and E had a high initial tensile modulus and exhibited excellent impact absorption. Moreover, it was flexible and light, which satisfies the standards and conditions required by protection pads. However, if T-E-10A and T-E-30B exhibited low impact absorption, as required, they can be regarded as appropriate materials for protection pads.