• Title/Summary/Keyword: Light-weight device

Search Result 156, Processing Time 0.028 seconds

The Converter of High Efficiency 48V 400A for Electronic Exchange (전자교환기용 고효율 48V 400A급 전력변환장치의 시작)

  • 박성우;서기영;전중함;김부국;이현우
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.60-63
    • /
    • 1998
  • The widely used power supply (Switched Mode Power Supply : SMPS) as a source in order to stabilize direct current for electronics or communication systems has merits, when it is compared to the existing source for stability, such as high efficiency, small size, light weight by means of switching process of the semiconductor device which controls the flow of power. However, due to existence of inductors and capacitors used for charging energy, the source part in electronic or communication systems hasn't reached the speed, that is supposed to get, for achieving smaller size and lighter weight. In order to get smallness in size, it is necessary to increase switching frequency. And that makes devices for measuring energy smaller. Nevertheless, the rise switching frequency brings increases in switching loss, inductor loss, and power loss. Also, the occurrence of surge and noise caused by high frequency switching is getting higher. The resonant converter has been considered as one of methods that give solutions for the problems of SMPS and that method have been paid attention as a source technology in electronics and communication.

  • PDF

Design and Implementation of Wearable Device using Lithium Polymer consist of Peltier (열전소자로 구성된 리듐 폴리머 베터리를 이용한 웨어러블 장치 설계 및 구현)

  • Li, YongZhen;Choi, Young_Soon
    • Journal of Convergence Society for SMB
    • /
    • v.5 no.2
    • /
    • pp.15-20
    • /
    • 2015
  • Recently, as smart phone technology is developing, wearable devices is also accelerating. But, the wearable device is necessary to operated for a long time with a small electric power because werable device is made compact. In this paper, we design and implement efficient lithium polymer battery model suitable to miniaturized wearable device in oder to maximize ease of use. The proposed model is characterized by a compact size of the battery by applying a thermal element and a light-weight battery. Also, proposed model gives greatly improve the life of wearable devices because it uses a method using the characteristics of the Peltier device using the temperature difference between the room temperature and body temperature of a person to generate power for charging. In particular, the proposed model can be used for the wearable device, as well as auxiliary charging of the smart phone.

  • PDF

Parametric Analysis and Design Optimization of a Pyrotechnically Actuated Device

  • Han, Doo-Hee;Sung, Hong-Gye;Jang, Seung-Gyo;Ryu, Byung-Tae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.409-422
    • /
    • 2016
  • A parametric study based on an unsteady mathematical model of a pyrotechnically actuated device was performed for design optimization. The model simulates time histories for the chamber pressure, temperature, mass transfer and pin motion. It is validated through a comparison with experimentally measured pressure and pin displacement. Parametric analyses were conducted to observe the detailed effects of the design parameters using a validated performance analysis code. The detailed effects of the design variables on the performance were evaluated using the one-at-a-time (OAT) method, while the scatter plot method was used to evaluate relative sensitivity. Finally, the design optimization was conducted by employing a genetic algorithm (GA). Six major design parameters for the GA were chosen based on the results of the sensitivity analysis. A fitness function was suggested, which included the following targets: minimum explosive mass for the uniform ignition (small deviation), light casing weight, short operational time, allowable pyrotechnic shock force and finally the designated pin kinetic energy. The propellant mass and cross-sectional area were the first and the second most sensitive parameters, which significantly affected the pin's kinetic energy. Even though the peak chamber pressure decreased, the pin kinetic energy maintained its designated value because the widened pin cross-sectional area induced enough force at low pressure.

Application and Verification of Fully-Integrated Design Environment for Piezoelectric Energy Harvester (압전형 에너지 수확장치를 위한 통합 해석환경의 적용 및 검증)

  • Liu, Jian;Welham, Chris;Han, Seungoh
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.364-368
    • /
    • 2013
  • Vibrational energy harvester based on piezoelectricity has been expected to be the dominant energy harvesting technology due to the advantages of high conversion efficiency, light weight and small size, night operation, etc. Its commercialization is just around the corner but the integration with power management electronics should be solved in advance. In this paper, therefore, fully-integrated design environment for piezoelectric energy harvesting systems is presented to assist co-design with the power management electronics. The proposed design environment is capable of analyzing the energy harvester including the package-induced damping effects and simulating the device and its power management electronics simultaneously. When the developed design environment was applied to the fabricated device, the simulated resonant frequency matched well with the experimental result with a difference of 2.97% only. Also, the complex transient response was completed in short simulation time of 3,001 seconds including the displacement distribution over the device geometry. Furthermore, a full-bridge power management circuit was modeled and simulated with the energy harvester simultaneously. Therefore the proposed, fully-integrated design environment is accurate and fast enough for the contribution on successful commercialization of piezoelectric energy harvester.

Development of Protection Device for Voltage Unbalance Faults using Three-Phase Neutral Voltage (삼상 중성점 전압을 이용한 전압불평형 사고 방지용 보호장치 개발)

  • Kwak, D.K.;Kim, D.S.;Kim, J.H.;Kim, S.C.;Jung, W.S.;Son, J.H.
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.621-622
    • /
    • 2012
  • The thermal over-current relay or electronic motor protection relay is mostly used as the open-phase detection device of the three-phase motor or load. When the over-current or overheat of electric line is generated, it detects and operates circuit breaker, but there is the defect that the sensing speed is slow, the operation can be sometimes failed, and the precision is decreased. In order to improve these problems, this paper is proposed a new control circuit topology for open-phase protection using semiconductor devices. Therefore, the proposed open-phase protection device enhances the sensing speed and precision, and has the advantage of simple fitting in the three-phase motor control panel in the field, as it manufactures into small size and light weight.

  • PDF

The Organic-Inorganic Hybrid Encapsulation Layer of Aluminium Oxide and F-Alucone for Organic Light Emitting Diodes

  • Gwon, Deok-Hyeon;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.374-374
    • /
    • 2012
  • Nowadays, Active Matrix Organic Light-Emitting Diodes (AM-OLEDs) are the superior display device due to their vivid full color, perfect video capability, light weight, low driving power, and potential flexibility. One of the advantages of AM-OLED over Liquid Crystal Display (LCD) lies in its flexibility. The potential flexibility of AM-OLED is not fully explored due to its sensitivity to moisture and oxygen which are readily present in atmosphere, and there are no flexible encapsulation layers available to protect these. Therefore, we come up with a new concept of Inorganic-Organic hybrid thin film as the encapsulation layer. Our Inorganic layer is Al2O3 and Organic layer is F-Alucone. We deposited these layers in vacuum state using Atomic Layer Deposition (ALD) and Molecular Layer Deposition (MLD) techniques. We found the results are comparable to commercial requirement of 10-6 g/m2 day for Water Vapor Transmission Rate (WVTR). Using ALD and MLD, we can control the exact thin film thickness and fabricate more dense films than chemical or physical vapor deposition methods. Moreover, this hybrid encapsulation layer potentially has both the flexibility of organic layers and superior protection properties of inorganic layer.

  • PDF

Improvement in the Stabilities of White Organic Light Emitting Diodes Using a Partially Doped Emission Layer

  • Jeon, Hyeon-Sung;Oh, Hwan-Sool;Yoon, Seok-Beom
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.3
    • /
    • pp.145-148
    • /
    • 2010
  • White organic light emitting devices were fabricated to improve the stability through a structural change using the two peak emission method. The fabricated devices were composed of indium tin oxide (100 nm)/ $\alpha$-NPD (30 nm)/4,40-bis(2,20-diphenylvinyl)-1,10-biphenyl (DPVBi, d: variable)/DPVBi: Rubrene (40 nm)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline(5 nm)/ $Alq_3$(5 nm)/ Al (100 nm). A DPVBi for blue emissions was used as the host material in the emitters. The doping concentration of the Rubrene was fixed at 2.0% (by weight). The white emission with Commission Internationale De L'Eclairage coordinates of (0.3342, 0.3439) occurred at 14 V with a thickness d of 1 nm. It was insensitive to the drive voltage, and the devices had a maximum luminance of $211\;cd/cm^2$. At 19 V, the current density and maximum external quantum efficiency were $173\;mAcm^2$ and 0.478%, respectively.

Low-Molecular-Weight White Organic-Light-Emitting-Devices using Direct Color Mixing Method

  • Lee, Sung-Soo;Song, Tae-Joon;Ko, Myung-Soo;Cho, Sung-Min
    • Journal of Information Display
    • /
    • v.3 no.2
    • /
    • pp.6-12
    • /
    • 2002
  • In order to achieve white emission from organic light emitting devices (OLEDs), five distinct structures were fabricated and tested. The white emission was obtained using two different color-emitting materials (yellow from rubrene-doped $Alq_3$ and blue from DPVBi) with or without a carrier-blocking layer. For enhancing the red emission, two types of devices with three-color emitting materials were fabricated. The white emission, close to the CIE coordinate of (0.3,0.3), was achieved by using two blocking layers as well that as without a blocking layer. This paper covers the subject of controlling the location of exciton recombination zone. It has been found that there is a trade-off in that the devices with three color emitting layers do not show as much luminescence efficiency compared to those with two color emitting layers, but rather, show distinct red emission in the resultant emission spectra. The highest power efficiency was measured to be 1.15lm/W at 2,000 $cd/m^2$ for a structure with two color-emitting layers.

Yellow, Orange, and Red Phosphorescent Materials for OLED Lightings (OLED 조명을 위한 Yellow, Orange, Red 인광 재료)

  • Jung, Hyocheol;Park, Young-Il;Kim, Beomjin;Park, Jongwook
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.247-250
    • /
    • 2015
  • Organic light-emitting diode (OLED) research field has received great attention from academic and industrial circles. Recently, The technical feature of OLEDs is more and more attractive in the lighting market, including area emission characteristics different from other existing light sources. Features are environmentally friendly and efficient use of energy, large area, ultra-light weight, and ultrathin shape, etc. Furthermore, OLED light became the mainstream of next-generation lighting to replace the light emitting diode (LED) fluorescent light. This article summarizes phosphorescent emitting materials that have been applied to white OLEDs. In particular, the chemical structures and device performances of the important yellow, orange, and red phosphorescent emitting materials is discussed. Systematic classification and understanding of the phosphorescent materials can aid the development of new light-emitting materials.

Study on Lifelog Anomaly Detection using VAE-based Machine Learning Model (VAE(Variational AutoEncoder) 기반 머신러닝 모델을 활용한 체중 라이프로그 이상탐지에 관한 연구)

  • Kim, Jiyong;Park, Minseo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.91-98
    • /
    • 2022
  • Lifelog data continuously collected through a wearable device may contain many outliers, so in order to improve data quality, it is necessary to find and remove outliers. In general, since the number of outliers is less than the number of normal data, a class imbalance problem occurs. To solve this imbalance problem, we propose a method that applies Variational AutoEncoder to outliers. After preprocessing the outlier data with proposed method, it is verified through a number of machine learning models(classification). As a result of verification using body weight data, it was confirmed that the performance was improved in all classification models. Based on the experimental results, when analyzing lifelog body weight data, we propose to apply the LightGBM model with the best performance after preprocessing the data using the outlier processing method proposed in this study.