• Title/Summary/Keyword: Light-induced protein-protein interaction

Search Result 10, Processing Time 0.026 seconds

Photo-induced inter-protein interaction changes in the time domain; a blue light sensor protein PixD

  • Terazima, Masahide
    • Rapid Communication in Photoscience
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • For understanding molecular mechanisms of photochemical reactions, in particular reactions of proteins with biological functions, it is important to elucidate both the initial reactions from the photoexcited states and the series of subsequent chemical reactions, e.g., conformation, intermolecular interactions (hydrogen bonding, hydrophobic interactions), and inter-protein interactions (oligomer formation, dissociation reactions). Although time-resolved detection of such dynamics is essential, these dynamics have been very difficult to track by traditional spectroscopic techniques. Here, relatively new approaches for probing the dynamics of protein photochemical reactions using time-resolved transient grating (TG) are reviewed. By using this method, a variety of spectrally silent dynamics can be detected and such data provide a valuable description about the reaction scheme. Herein, a blue light sensor protein TePixD is the exemplar. The initial photochemistry for TePixD occurs around the chromophore and is detected readily by light absorption, but subsequent reactions are spectrally silent. The TG experiments revealed conformational changes and changes in inter-protein interactions, which are essential for TePixD function. The TG experiments also showed the importance of fluctuations of the intermediates as the driving force of the reaction. This technique is complementary to optical absorption detection methods. The TG signal contains a variety of unique information, which is difficult to obtain by other methods. The advantages and methods for signal analyses are described in detail in this review.

Extracellular vesicles as novel carriers for therapeutic molecules

  • Yim, Nambin;Choi, Chulhee
    • BMB Reports
    • /
    • v.49 no.11
    • /
    • pp.585-586
    • /
    • 2016
  • Extracellular vesicles (EVs) are natural carriers of biomolecules that play central roles in cell-to-cell communications. Based on this, there have been various attempts to use EVs as therapeutic drug carriers. From chemical reagents to nucleic acids, various macromolecules were successfully loaded into EVs; however, loading of proteins with high molecular weight has been huddled with several problems. Purification of recombinant proteins is expensive and time consuming, and easily results in modification of proteins due to physical or chemical forces. Also, the loading efficiency of conventional methods is too low for most proteins. We have recently proposed a new method, the so-called exosomes for protein loading via optically reversible protein-protein interaction (EXPLORs), to overcome the limitations. Since EXPLORs are produced by actively loading of intracellular proteins into EVs using blue light without protein purification steps, we demonstrated that the EXPLOR technique significantly improves the loading and delivery efficiency of therapeutic proteins. In further in vitro and in vivo experiments, we demonstrate the potential of EXPLOR technology as a novel platform for biopharmaceuticals, by successful delivery of several functional proteins such as Cre recombinase, into the target cells.

Comparative study of thermal gelation properties and molecular forces of actomyosin extracted from normal and pale, soft and exudative-like chicken breast meat

  • Li, Ke;Liu, Jun-Ya;Fu, Lei;Zhao, Ying-Ying;Bai, Yan-Hong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.5
    • /
    • pp.721-733
    • /
    • 2019
  • Objective: The objectives of this study were to investigate the thermal gelation properties and molecular forces of actomyosin extracted from two classes of chicken breast meat qualities (normal and pale, soft and exudative [PSE]-like) during heating process to further improve the understanding of the variations of functional properties between normal and PSE-like chicken breast meat. Methods: Actomyosin was extracted from normal and PSE-like chicken breast meat and the gel strength, water-holding capacity (WHC), protein loss, particle size and distribution, dynamic rheology and protein thermal stability were determined, then turbidity, active sulfhydryl group contents, hydrophobicity and molecular forces during thermal-induced gelling formation were comparatively studied. Results: Sodium dodecyl sulphate-polyacrylamide gel electrophoresis showed that protein profiles of actomyosin extracted from normal and PSE-like meat were not significantly different (p>0.05). Compared with normal actomyosin, PSE-like actomyosin had lower gel strength, WHC, particle size, less protein content involved in thermal gelation forming (p<0.05), and reduced onset temperature ($T_o$), thermal transition temperature ($T_d$), storage modulus (G') and loss modulus (G"). The turbidity, reactive sulfhydryl group of PSE-like actomyosin were higher when heated from $40^{\circ}C$ to $60^{\circ}C$. Further heating to $80^{\circ}C$ had lower transition from reactive sulfhydryl group into a disulfide bond and surface hydrophobicity. Molecular forces showed that hydrophobic interaction was the main force for heat-induced gel formation while both ionic and hydrogen bonds were different significantly between normal and PSE-like actomyosin (p<0.05). Conclusion: These changes in chemical groups and inter-molecular bonds affected protein-protein interaction and protein-water interaction and contributed to the inferior thermal gelation properties of PSE-like meat.

Stage specific transcriptome profiles at cardiac lineage commitment during cardiomyocyte differentiation from mouse and human pluripotent stem cells

  • Cho, Sung Woo;Kim, Hyoung Kyu;Sung, Ji Hee;Han, Jin
    • BMB Reports
    • /
    • v.54 no.9
    • /
    • pp.464-469
    • /
    • 2021
  • Cardiomyocyte differentiation occurs through complex and finely regulated processes including cardiac lineage commitment and maturation from pluripotent stem cells (PSCs). To gain some insight into the genome-wide characteristics of cardiac lineage commitment, we performed transcriptome analysis on both mouse embryonic stem cells (mESCs) and human induced PSCs (hiPSCs) at specific stages of cardiomyocyte differentiation. Specifically, the gene expression profiles and the protein-protein interaction networks of the mESC-derived platelet-derived growth factor receptor-alpha (PDGFRα)+ cardiac lineage-committed cells (CLCs) and hiPSC-derived kinase insert domain receptor (KDR)+ and PDGFRα+ cardiac progenitor cells (CPCs) at cardiac lineage commitment were compared with those of mesodermal cells and differentiated cardiomyocytes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that the genes significantly upregulated at cardiac lineage commitment were associated with responses to organic substances and external stimuli, extracellular and myocardial contractile components, receptor binding, gated channel activity, PI3K-AKT signaling, and cardiac hypertrophy and dilation pathways. Protein-protein interaction network analysis revealed that the expression levels of genes that regulate cardiac maturation, heart contraction, and calcium handling showed a consistent increase during cardiac differentiation; however, the expression levels of genes that regulate cell differentiation and multicellular organism development decreased at the cardiac maturation stage following lineage commitment. Additionally, we identified for the first time the protein-protein interaction network connecting cardiac development, the immune system, and metabolism during cardiac lineage commitment in both mESC-derived PDGFRα+ CLCs and hiPSC-derived KDR+PDGFRα+ CPCs. These findings shed light on the regulation of cardiac lineage commitment and the pathogenesis of cardiometabolic diseases.

Interaction of Microtubule-associated Protein 1B Light Chain(MAP1B-LC1) and p53 Represses Transcriptional Activity of p53

  • Kim, Jung-Woong;Lee, So-Youn;Jeong, Mi-Hee;Jang, Sang-Min;Song, Ki-Hyun;Kim, Chul-Hong;Kim, You-Jin;Choi, Kyung-Hee
    • Animal cells and systems
    • /
    • v.12 no.2
    • /
    • pp.69-75
    • /
    • 2008
  • The tumor suppressor and transcription factor p53 is a key modulator of cellular stress responses, and can trigger apoptosis in many cell types including neurons. In this study, we have shown that Microtubule-associated protein 1B(MAP1B) light chain interacts with tumor suppressor p53. MAP1B is one of the major cytoskeletal proteins in the developing nervous system and essential in forming axons during elongation. We also demonstrate that both p53 and MAP1B-LC1 interact in the nucleus in HEK 293 cells. Indeed, we show that the MAP1B-LC1 negatively regulates p53-dependent transcriptional activity of a reporter containing the p21 promoter. Consequently, MAP1B light chain binds with p53 and their interaction leads to the inhibition of doxorubicin-induced apoptosis in HEK 293 cells. Furthermore, these examinations might be taken into consideration when knock-down of MAP1B-LC1 is used as a cancer therapeutic strategy to enhance p53's apoptotic activity in chemotherapy.

Selective Interaction Between Chloroplast β-ATPase and TGB1L88 Retards Severe Symptoms Caused by Alternanthera mosaic virus Infection

  • Seo, Eun-Young;Nam, Jiryun;Kim, Hyun-Seung;Park, Young-Hwan;Hong, Seok Myeong;Lakshman, Dilip;Bae, Hanhong;Hammond, John;Lim, Hyoun-Sub
    • The Plant Pathology Journal
    • /
    • v.30 no.1
    • /
    • pp.58-67
    • /
    • 2014
  • The multifunctional triple gene block protein 1 (TGB1) of the Potexvirus Alternanthera mosaic virus (AltMV) has been reported to have silencing suppressor, cell-to-cell movement, and helicase functions. Yeast two hybrid screening using an Arabidopsis thaliana cDNA library with TGB1 as bait, and co-purification with TGB1 inclusion bodies identified several host proteins which interact with AltMV TGB1. Host protein interactions with TGB1 were confirmed by biomolecular fluorescence complementation, which showed positive TGB1 interaction with mitochondrial ATP synthase delta' chain subunit (ATP synthase delta'), light harvesting chlorophyll-protein complex I subunit A4 (LHCA4), chlorophyll a/b binding protein 1 (LHB1B2), chloroplast-localized IscA-like protein (ATCPISCA), and chloroplast ${\beta}$-ATPase. However, chloroplast ${\beta}$-ATPase interacts only with $TGB1_{L88}$, and not with weak silencing suppressor $TGB1_{L88}$. This selective interaction indicates that chloroplast ${\beta}$-ATPase is not required for AltMV movement and replication; however, TRV silencing of chloroplast ${\beta}$-ATPase in Nicotiana benthamiana induced severe tissue necrosis when plants were infected by AltMV $TGB1_{L88}$ but not AltMV $TGB1_{L88}$, suggesting that ${\beta}$-ATPase selectively responded to $TGB1_{L88}$ to induce defense responses.

A Novel Phototransduction Pathway in the Pineal Gland and Retina

  • Okano, Toshiyuki;Kasahara, Takaoki;Fukada, Yoshitaka
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.246-248
    • /
    • 2002
  • Light is a major environmental signal for entrainment of the circadian clock, but little is known about the phototransduction pathway triggered by light-activation of photoreceptive molecule(s) responsible for the phase shift of the clock in vertebrates. The chicken pineal gland and retina contain the autonomous circadian oscillators together with the photic entrainment pathway, and hence they provide useful experimental model for the clock system. We previously demonstrated the expression and light-dependent activation of rod-type transducin $\alpha$-subunit (Gtl$\alpha$) in the chicken pineal gland. It is unlikely, however, that the pineal Gt$_1$$\alpha$ plays a major role in the photic entrainment, because the light-induced phase shift is unaffected by bloking the signaling function of Gt$_1$$\alpha$. Here, we show the expression of G 11 $\alpha$, an $\alpha$-subunit of another heterotrimeric G-protein, in the chicken pineal gland and retina by cDNA cloning, Northern blot and Western blot analyses. GIl$\alpha$-immunoreactivity was colocalized with pinopsin in the chicken pineal cells and it was found predominantly at the outer segments of photoreceptor cells in the retinal sections, suggesting functional coupling of G11 $\alpha$ with opsins in the both the tissues. By coimmunoprecipitation experiments using the retina, we showed the light- and GTP-dependent interaction between rhodopsin and G11 $\alpha$. Upon ectopic expression of a Gq/ 11-coupled receptor in cultured pineal cells, pharmacological (non-photic) activation of endogenous G11 induced phase-dependent phase shifts of the melatonin rhythm in a manner very similar to the effect of light. These results suggested opsin-G11 pathway contributing to the photic entrainment of the circadian clock.

  • PDF

29-kDa FN-f inhibited autophagy through modulating localization of HMGB1 in human articular chondrocytes

  • Hwang, Hyun Sook;Choi, Min Ha;Kim, Hyun Ah
    • BMB Reports
    • /
    • v.51 no.10
    • /
    • pp.508-513
    • /
    • 2018
  • Fibronectin fragments found in the synovial fluid of patients with osteoarthritis (OA) induce the catabolic responses in cartilage. Nuclear high-mobility group protein Box 1 (HMGB1), a damage-associated molecular pattern, is responsible for the regulation of signaling pathways related to cell death and survival in response to various stimuli. In this study, we investigated whether changes induced by 29-kDa amino-terminal fibronectin fragment (29-kDa FN-f) in HMGB1 expression influences the pathogenesis of OA via an HMGB1-modulated autophagy signaling pathway. Human articular chondrocytes were enzymatically isolated from articular cartilage. The level of mRNA was measured by quantitative real-time PCR. The expression of proteins was examined by western blot analysis, immnunofluorescence assay, and enzyme-linked immunosorbent assay. Interaction of proteins was evaluated by immunoprecipitation. The HMGB1 level was significantly lower in human OA cartilage than in normal cartilage. Although 29-kDa FN-f significantly reduced the HMGB1 expression at the mRNA and protein levels 6 h after treatment, the cytoplasmic level of HMGB1 was increased in chondrocytes treated with 29-kDa FN-f, which significantly inhibited the interaction of HMGB1 with Beclin-1, increased the interaction of Bcl-2 with Beclin-1, and decreased the levels of Beclin-1 and phosphorylated Bcl-2. In addition, the level of microtubule-associated protein 1 light chain 3-II, an autophagy marker, was down-regulated in chondrocytes treated with 29-kDa FN-f, whereas the effect was antagonized by mTOR knockdown. Furthermore, prolonged treatment with 29-kDa FN-f significantly increased the release of HMGB1 into the culture medium. These results demonstrated that 29-kDa FN-f inhibits chondrocyte autophagy by modulating the HMGB1 signaling pathway.

Affinity of transducin for photoactivated rhodopsin: dependence on nucleotide binding state

  • Clack, James W.
    • BMB Reports
    • /
    • v.41 no.7
    • /
    • pp.555-560
    • /
    • 2008
  • The interaction of the rod GTP binding protein, Transducin ($G_t$), with bleached Rhodopsin ($R^*$) was investigated by measuring radiolabeled guanine nucleotide binding to and release from soluble and/or membrane-bound Gt by reconstituting $G_t$ containing bound GDP ($G_t$-GDP) or the hydrolysis-resistant GTP analog guanylyl imidodiphosphate ($G_t$-p[NH]ppG) with $R^*$ under physiological conditions. Release of GDP and p[NH]ppG from $G_t$ occurred to the same extent and with the same light sensitivity both in the presence and absence of added GTP. Significant amounts of $G_t$ without bound nucleotide ($G_{t^-}$) were generated. When ROS containing bleached rhodopsin ($R^*$) were centrifuged in low ionic strength buffer, $G_{t^-}$ remained associated with the membrane fraction, whereas $G_t$-GDP remained in the soluble fraction. These results suggest that $G_t$-GDP and $G_t$-p[NH]ppG have similar affinities for $R^*$. The results also suggest that $G_{t^-}$, rather than $G_t$-GDP, is the moiety which exhibits tight, "light-induced" binding to rhodopsin.

Autistic-like social deficits in hippocampal MeCP2 knockdown rat models are rescued by ketamine

  • Choi, Miyeon;Ko, Seung Yeon;Seo, Jee Young;Kim, Do Gyeong;Lee, Huiju;Chung, Heekyoung;Son, Hyeon
    • BMB Reports
    • /
    • v.55 no.5
    • /
    • pp.238-243
    • /
    • 2022
  • Autism or autism spectrum disorder (ASD) is a behavioral syndrome characterized by persistent deficits in social interaction, and repetitive patterns of behavior, interests, or activities. The gene encoding Methyl-CpG binding protein 2 (MeCP2) is one of a few exceptional genes of established causal effect in ASD. Although genetically engineered mice studies may shed light on how MeCP2 loss affects synaptic activity patterns across the whole brain, such studies are not considered practical in ASD patients due to the overall level of impairment, and are technically challenging in mice. For the first time, we show that hippocampal MeCP2 knockdown produces behavioral abnormalities associated with autism-like traits in rats, providing a new strategy to investigate the efficacy of therapeutics in ASD. Ketamine, an N-Methyl-D-aspartate (NMDA) blocker, has been proposed as a possible treatment for autism. Using the MeCP2 knockdown rats in conjunction with a rat model of valproic acid (VPA)-induced ASD, we examined gene expression and ASD behaviors upon ketamine treatment. We report that the core symptoms of autism in MeCP2 knockdown rats with social impairment recovered dramatically following a single treatment with ketamine.