• 제목/요약/키워드: Light-emitting polymer

검색결과 297건 처리시간 0.031초

Synthesis and Characterization of New Blue Light Emitting Alternating Terphenylenevinylene Carbazylenevinylene Copolymer

  • Kim Yun-Hi;Park Jung-Cheol;Kang Hun-Jin;Park Jong-Won;Kim Hyung-Sun;Kim Jin-Hak;Kwon Soon-Ki
    • Macromolecular Research
    • /
    • 제13권5호
    • /
    • pp.403-408
    • /
    • 2005
  • A new terphenylenevinylene carbazylenevinylene alternating copolymer with the advantage of poly(p-phenylenevinylene) (PPV), poly(p-phenylene )(PPP) and poly(carbazole) was designed, synthesized and characterized. The polymer structure was confirmed by various spectroscopic analyses and the number average molecular weight ($M_n$) of the obtained polymer was 7,800. The resulting polymer was thermally stable with high glass transition temperature ($T_g$) ($150^{\circ}C$), and was readily soluble in common organic solvents. Cyclic voltammetry study revealed that the HOMO and LUMO energy levels of the polymer were 5.37 and 2.47 eV, respectively. The ITO/PEDOT/polymer/AI device fabricated from the polymer emitted bright sky blue light with a maximum peak of around 478 nm. The device showed the maximum brightness of 1,200 nW with a turn-on voltage of 7V.

Highly efficient and stable polymer light emitting display

  • Kim, Sung-Han;MacPherson, Charlie;Srdanov, Gordana;Chen, Peter;Stevenson, Matt;Baggao, Erlinda;Yu, Gang;Parker, Ian;O’Regan, Marie
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1044-1045
    • /
    • 2005
  • Rapid progress has been achieved towards commercially viable full color polymer OLED devices. New full color polymer OLED displays which incorporate a novel hole injecting-transporting layer show high efficiency, low operating voltage and long lifetimes. The performance of a 14.1" WXGA a-Si based solution processed AMOLED full color display is described.

  • PDF

New Fluorene-Based Polyquinoxalines with Ether-Linkage in The Main Chain: Synthesis and Light-Emitting Properties

  • Jung, Sung-Hyun;Kim, Dong-Young;Cho, Hyun-Nam;Won, You-Tae;Suh, Dong-Hack
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.937-939
    • /
    • 2003
  • We synthesized and characterized new fluorene-based polyquinoxalines with ether-linkage in the main chain, which have luminescent properties. Cyclic voltammetry reveals that these polymers have a low-lying LUMO and HOMO energy levels. Therefore, the polymers would be attractive candidates for electron-tansporting or hole-blocking materials in LEDs.

  • PDF

Solution-Processible Blue-Light-Emitting Polymers Based on Alkoxy-Substituted Poly(spirobifluorene)

  • Lee, Jeong-Ik;Chu, Hye-Yong;Oh, Ji-Young;Do, Lee-Mi;Lee, Hyo-Young;Zyung, Tae-Hyoung;Lee, Jae-Min;Shim, Hong-Ku
    • ETRI Journal
    • /
    • 제27권2호
    • /
    • pp.181-187
    • /
    • 2005
  • Alkoxy-substituted poly(spirobifluorene)s and their copolymers with a triphenylamine derivative have been synthesized by Ni(0)-mediated polymerization. The polymers were well soluble in common organic solvents. Pure blue-light emissions without the long wavelength emission of poly(fluorene)s have been observed in the fluorescence spectra of polymer thin films. The light emitting diodes with a device configuration of ITO/PEDT:PSS(30 nm)/polymer(60 nm)/LiF(1 nm)/Al(100 nm) have been fabricated. The electroluminescence spectra showed the blue emissions without the long wavelength emission as observed in the fluorescence spectra. The relatively poor electroluminescence quantum yield of the homopolymer (0.017% @ 20 $mA/cm^{2}$) with color coordinates of (0.16, 0.07) has been improved by the introduction of triphenylamine moiety, and the copolymer with derivative exhibited an electroluminescence quantum yield of 0.15 % at 20 $mA/cm^{2}$ with color coordinates of (0.16, 0.08). Moreover, the introduction of polar side chains to the spirobifluorene moiety enhanced the device performance and led to the quantum yields of 0.6 to 0.7 % at 20 $mA/cm^{2}$, although there was some expense of color purities.

  • PDF

단층형 유기 EL 소자의 에너지 전달 특성에 관한 연구 (Energy Transfer Phenomenon in Organic EL Devices Having Single Emitting Layer)

  • 김주승;서부완;구할본;이경섭
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 영호남학술대회 논문집
    • /
    • pp.331-334
    • /
    • 2000
  • The organic electroluminescent(EL) device has gathered much interest because of its large potential in materials and simple device fabrication. We fabricated EL devices which have a blended single emitting layer containg poly(Nvinylcarbazole)[PVK] and poly(3-dodecylthiophene)[P3DoDT]. The molar ratio between P3DoDT and PVK changed with 1:0, 2:1 and 1:1. To improve the external quantum efficiency of EL devices, we applied insulating layer, LiF layer between polymer emitting layer and AI electrode. All of the devices emit orange-red light and it's can be explained that the energy transfer occurs from PVK to P3DoDT. Within the molar ratio 1:0, 2:1 and 1:1, the energy transfer was not saturated, which results in the not appearance of PVK emission in the blue region. In the voltage-current and voltage-light power characteristics of devices applied LiF layer, current and light power drastically increased with increasing with applied voltage. In the consequence of the result, the light power of the device have a molar ratio 1:1 with LiF layer was about 10 times larger than that of the device without PVK at 6V.

  • PDF

Synthesis and Effect on t-Butyl PBD of the Blue Light Emitting Poly(phenyl-9,9-dioctyl-9',9'-dihexanenitrile) fluorene

  • Kim Byong-Su;Kim Chung-Gi;Oh Jea-Jin;Kim Min-Sook;Kim Gi-Won;Park Dong-Kyu;Woo Hyung-Suk
    • Macromolecular Research
    • /
    • 제14권3호
    • /
    • pp.343-347
    • /
    • 2006
  • A novel, blue light-emitting polymer, poly(phenyl-9,9-dioctyl-9',9'dihexanenitrile)fluorene (PPFC6N), containing an alkyl and cyano group in the side chain, was synthesized by Suzuki polymerization and characterized. The polymer structure was confirmed by $^1H-NMR$. The number average molecular weight and the weight average molecular weight of the obtained polymer were 9,725 and 9,943 respectively. The resulting polymer was thermally stable with a glass transition temperature ($T_g$) of $93^{\circ}C$, and was easily soluble in common organic solvents such as THF, toluene, chlorobenzene and chloroform. The HOMO and LUMO energy levels of the polymer were revealed as 5.8 and 2.88 eV by cyclic voltammetry study, respectively. The ITO/PEDOT:PSS (40 nm)/PPFC6N (80 m)/LiF (1 nm)/Al (150 nm) device fabricated from the polymer emitted a PL spectrum at 450 nm and showed a real blue emission for pure PPFC6N in the EL spectrum. When t-butyl PBD was introduced as a hole blocking layer, the device performance was largely improved and the EL spectrum was slightly shifted toward deep blue. The device with PPFC6N containing t-butyl PBD layer showed the maximum luminance of 3,200 $cd/m^2$ at 9.5 V with a turnon voltage of 7 V.

PREPARATION OF POLYMERIC PHOTOSTABILIZERS CONTAINING HALS GROUPS AND THEIR PHOTOSTABILIZATION EFFECTS ON POLYSTYRENE

  • Chae, Kyu Ho;Oh, Jae-Seong;Ham, Heui Suk
    • Journal of Photoscience
    • /
    • 제3권3호
    • /
    • pp.167-169
    • /
    • 1996
  • Absorption of UV light induces photocleavage of polymer chains to produce free radicals which initiate photodegradation of the polymer molecules. Discoloration, cracking of surface, stiffening, and decreasing of mechanical properties of polymeric products occur as a result of photodegradation of the polymers. Photostabilizers are added to the polymer systems in order to minimize the unwanted effects of UV light. It is well known that Hindered Amine Light Stabilizers (HALS) are one of the most effective photostabilizer for polymers.' HALS have been used in a large number of commercial polymers and predominantly used in styrenic and engineering plastics. They are efficient and cost-effective in many applications despite their high prices. However, low molecular weight HALS vaporize easily, emitting harmful amines, and have poor extraction resistance, decreasing their photostabilization effect. They also decompose during processing and migrate within the polymers resulting in deposition on the polymer surfaces called 'blooming". These drawbacks of low molecular HALS can be overcome by use of the polymeric HALS. We have been studying photochemical reactions of the polymer systems. The present paper reports the preparation of a new polymeric photostabilizer containing HALS groups and their stabilization effects on photooxidation of polystyrene. The synthetic scheme for the preparation of polymeric photostabilizers containing HALS groups were shown at Scheme 1. N-[(Chloroformyl) phenyl]maleimide (CPMI) and N-[4-(chlorocarbonyl) phenyl]maleimide (CPMIC) were prepared by the known procedure. N[4-N'-(2,2,6,6-tetramethyl-4-piperidinyl)aminocarbonyl-phenyl] maleimide (TMPI) was prepared by the reaction of CPMI with 4-amino-2,2,6,6-tetramethylpiperidine (ATMP).

  • PDF

고분자 블렌드를 이용한 EL 소자의 임피던스 특성 (Impedance Properties of Electroluminescent Device Containing Blended Polymer Single-Layer)

  • 김주승;서부완;구할본;이경섭
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.332-335
    • /
    • 2000
  • We fabricated organic electroluminescent (EL) devices with single layer of poly(3-dodeoylthiophene) (P3DoDT) hlended with different amounts of poly(N-vinylcarbazole) (PVK) as a emitting layer. The molar ratio between P3DoDT and PVK changed with 1:0, 2:1 and 1:1. To improve the external quantum efficiency of EL devices, we applied insulating layer, LiF layer, between polymer emitting layer and Al electrode. All of the devices emit orange-red light and it's can be explained that the energy transfer occurs from PVK to P3DoDT. In the voltage-current and voltage-brightness characteristics of devices applied LiF layer, current and brightness increased with increasing applied voltage. The brightness of the device have a molar ratio 1:1 with LiF layer was about 10 times larger than that of the device without PVK at 6V. Electrical impedance properties of ITO/emitting layer/LiF/Al devices were investigated. In the Cole-Cole plots of impedance data, one semicircle was observed. Therefore, the equivalent circuit for the devices can be designed as a single parallel resistor and capacitor network with series resistor.

  • PDF

Intramolecular Energy Transfer in Heteroleptic Red Phosphorescent Organic Light Emitting Diodes

  • Lee, Jun-Yeob;Kim, Sung-Hyun;Jang, Jyong-Sik
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.232-232
    • /
    • 2006
  • Intramolecular energy transfer in heteroleptic red phosphorescent dopant materials with mixed ligand units in one molecule was studied. 1-phenylisoquinoline(piq) and phenylpyridine(ppy) moieties were introduced as ligands for Ir based phosphorescent dopants and light emission mechanism was investigated. Intramolecular energy transfer from ppy ligand to piq ligand resulted in pure red emission without any green emission from ppy. Current efficiency of red devices was improved from 4 cd/A to 4.8 cd/A by using mixed ligand structures and deposition temperature of red dopant could be lowered by introducing ppy ligand.

  • PDF

LED 광원의 눈부심 현상을 감소시키기 위한 표면 실장형 CR 렌즈 개발 (Development of Surface-mount-type Crown-shaped Lens for Reducing Glare Effect of Light-emitting Diode Light Source)

  • 박용민;방현철;서영호;김병희
    • 한국생산제조학회지
    • /
    • 제23권1호
    • /
    • pp.64-68
    • /
    • 2014
  • This paper introduces the use of a crown-shaped (CR) lens to effectively diffuse the light from a light-emitting diode (LED) without any loss in the light intensity, in contrast to polymer-bulb-type diffusers. The diffusion lens was designed based on the Snell's law, which describes the physical path of a ray passing through the boundary between different media. CR lenses were fabricated by polydimethylsiloxane (PDMS) casting and UV-embossing processes, which used a pre-designed metal mold and UV-curable resin, respectively. Through experiments and optical evaluations, it was verified that the newly proposed CR lens not only decreased the vertical light strength and glare effect from an LED light source but also improved the diffusion characteristics while maintaining the quality of the LED's light intensity.