• Title/Summary/Keyword: Light-emitting phosphor

Search Result 156, Processing Time 0.027 seconds

Acceleration Test for Package of High Power Phosphor Converted White Light Emitting Diodes (고출력 형광체변환 백색 LED 패키지의 가속시험)

  • Chan, Sung-Il;Yu, Yang-Gi;Jang, Joong-Soon
    • Journal of Applied Reliability
    • /
    • v.10 no.2
    • /
    • pp.137-148
    • /
    • 2010
  • This study deals with the accelerated life test of high power phosphor converted white Light Emitting Diodes (High power LEDs). Samples were aged at $110^{\circ}C$/85% RH and $130^{\circ}C$/85% RH up to 900 hours under non-biased condition. The stress induced a luminous flux decay on LEDs in all the conditions. Aged devices exhibited modification of package silicon color from white to yellowish brown. The instability of the package contributes to the overall degradation of optical lens and structural degradations such as generating bubbles. The degradation mechanisms of lumen decay and reduction of spectrum intensity were ascribed to hygro-mechanical stress which results in package instabilities.

Novel Phosphors for UV Excitable White Light Emitting Diodes

  • Liu, Ru-Shi;Lin, Chun-Che;Tang, Yu-Sheng;Hu, Shu-Fen
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1343-1346
    • /
    • 2008
  • $KSrPO_4$ and $Sr_3(Al_2O_5)Cl_2$ phosphors doped with $Eu^{2+}$ emit a blue and orange-yellow luminescence under ultraviolet (UV) excitation at ~ 400 nm, respectivel, which can be used for making white light emitting diodes.

  • PDF

Improved White Light Emitting Diode Characteristics by Coating GdAG:Ce Phosphor

  • Joshi, Charusheela;Yadav, Pooja;Moharil, S.V.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.2
    • /
    • pp.69-72
    • /
    • 2014
  • White LEDs, based on blue LED chips coated with a yellow emitting phosphor (YAG:Ce), have several disadvantages. In this paper, we report the improvement in CRI [Color Rendition Index] using $GdAl_5O_{12}:Ce$ (GdAG:Ce) and related phosphors for blue LEDs. A modified combustion synthesis route using mixed fuel was used for synthesis route. By using this procedure, we formed the desired compounds in a single step. LEDs were then fabricated by coating the blue LED chips (CREE 470 nm, 300 micron) with the GdAG:Ce phosphor dispersed in epoxy resin. The CRI typically between 65~70 for the YAG:Ce based LED was improved to 87 for LEDs fabricated from the Gd(Al,Ga)G phosphors.

Rietveld refinement study on variation of emission wavelength of $(Sr_{1-x},Ca_x)_2MgSi_2O_7:Eu^{2+}$ phosphor for white LED applications

  • Kwon, Ki-Hyuk;Im, Won-Bin;Jang, Ho-Seong;Yoo, Hyoung-Sun;Jeon, Duk-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.565-568
    • /
    • 2008
  • In this study, a blue-emitting $Sr_2MgSi_2O_7:Eu^{2+}$ (SMS) phosphor for white light-emitting diodes is reported. Through transition of $4f{\rightarrow}5d$ in $Eu^{2+}$, SMS showed a strong blue emission under UV excitation. Additionally, the variation of emission wavelength of SMS is explained by crystal field effect and is supported by rietveld refinement.

  • PDF

New Phosphor and Material Structures for Displays

  • Summers, Christopher J.;King, Jeffrey;Park, Woun-Jhang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.243-252
    • /
    • 2002
  • We propose a new concept: that of photonic crystal phosphors (PCPs) for display and phosphor related applications. It is well known that microcavities with dimensions comparable to the emitting wavelength strongly enhance light-matter interactions, resulting in a significant increase in spontaneous emission rate, which can be directly translated into enhancement in phosphor efficiency. In recent simulations we have demonstrated that when a microcavity is formed in a nano-phosphor structure, the luminescence band is modified, and can be made spectrally sharp and tunable by engineering the geometry/material properties of the cavity and the surrounding photonic crystal lattice. New phosphor material structures based on photonic crystals are proposed. Applications to thin film EL phosphors and particle phosphors are discussed. Additionally, economic methods of synthesizing and incorporating PCPs into current display applications are proposed.

  • PDF

Synthesis and Luminescent Characteristics of BaGa2S4:Eu2+ Green Phosphor for Light Emitting Diode (LED용 BaGa2S4:Eu2+ 녹색 형광체의 합성 및 발광특성)

  • Kim, Jae-Myung;Park, Joung-Kyu;Kim, Kyung-Nam;Lee, Seung-Jae;Kim, Chang-Hae
    • Korean Journal of Materials Research
    • /
    • v.16 no.12
    • /
    • pp.761-765
    • /
    • 2006
  • [ $II-III_2-(S,Se)_4$ ] structured of phosphor has been used at various field because those have high luminescent efficiency and broad emission band. Among these phosphors, the europium doped $BaGa_2S_4$ was prepared by solid-state method and had high potential application due to an emissive property of UV region. Also, the common sulfide phosphors were synthesized by using injurious $H_2S\;or\;CS_2$ gas. However, in this study $BaGa_2S_4:Eu^{2+}$ phosphor in addition to excess sulfur was prepared under at 5% $H_2/95%\;N_2$ reduction atmosphere. Thus, this process could be considered as large scale synthesis because of non-harmfulness and simplification. The photoluminescence efficiency of the prepared $BaGa_2S_4:Eu^{2+}$ phosphor increased 20% than that of commercial $SrGa_2S_4:Eu^{2+}$ phosphor. The prepared $BaGa_2S_4:Eu^{2+}$ could be applied to green phosphor for white LED of three wavelengths.

Electrical Characteristics of Green Emitting Phosphor $Ir(PPY)_3$ Doped OLEDs

  • Kim, Jun-Ho;Kim, Yun-Myung;Ha, Yun-Kyung;Kim, Young-Kwan;Kim, Jung-Soo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.3
    • /
    • pp.53-57
    • /
    • 2001
  • The organic light-emitting devices (OLEDs) based on fluorescence have low efficiency due to the requirement of spin-symmetry conservation. By using the phosphorescent material, internal quantum efficiency can reach 100%, compared with 25% in the case of the fluorescent material. Thus, phosphorescent OLEDs have recently been extensively studied and shown higher internal quantum efficiency than the conventional OLEDs. In this study, we investigated the characteristics of the phosphorescent OLEDs with the green emitting phosphor, $Ir(ppy)_3$ (tris(2-phenylpyridine)iridium). The device with a structure of ITO/TPD$Ir(ppy)_3$ doped in BCP/BCP/$Alq_3$/Li:Al/Al was fabricated, and its electrical and optical characteristics were studied. By changing the doping concentration of $Ir(ppy)_3$, we fabricated several devices and investigated their characteristics.

  • PDF

Synthesis and photoluminescence of Ca3Si3O8F2: Ce4+, Eu3+, Tb3+ phosphor

  • Suresh, K.;PoornachandraRao, Nannapaneni V.;Murthy, K.V.R.
    • Advances in materials Research
    • /
    • v.3 no.4
    • /
    • pp.227-232
    • /
    • 2014
  • $Ce^{4+}$, $Eu^{3+}$, $Tb^{3+}$ co-doped $Ca_3Si_3O_8F_2$ phosphor was synthesized via solid state reaction method using $CaF_2$, $CaCO_3$ and $SiO_2$ as raw materials for the host and $Eu_2O_3$, $CeO_2$, and $Tb_4O_7$ as activators. The luminescent properties of the phosphor was analysed by spectrofluorophotometer at room temperature. The effect of excitation wavelengths on the luminescent properties of the phosphor i.e. under near-ultraviolet (nUV) and visible excitations was investigated. The emission peaks of $Ce^{4+}$, $Eu^{3+}$, $Tb^{3+}$ co-doped $Ca_3Si_3O_8F_2$ phosphor lays at 480(blue band), 550(green band) and 611nm (red band) under 380nm excitation wavelength, attributed to the $Ce^{4+}$ ion, $Tb^{3+}$ ion and $Eu^{3+}$ ions respectively. The results reveal that the phosphor emits white light upon nUV (380nm) / visible (465nm) illumination, and a red light upon 395nm / 535nm illumination. RE ions doped $Ca_3Si_3O_8F_2$ is a promising white light phosphor for LEDs. The emission colours can be seen using Commission international de l'eclairage (CIE) co-ordinates. A single host phosphor emitting different colours under different excitations indicates that it is a potential phosphor having applications in many fields.

Development of yellow and blue phosphor and their emission properties

  • Park Soo-Gil;Cho Seong-Ryoul;Son Won-Ken;Lim Kee-Joe;Lee Ju-Seong
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.24-27
    • /
    • 1998
  • Electroluminescence (EL) comes from the light emission obtained by the electrical excitation energy passing through a phosphor layer undo. an applied high electrical field $(10^6 V/cm)$. The preparation of white and blue phosphors and characterizations of light emitting alternating current powder electroluminescent devices (ACPELDs) were investigated. In this work, we fabricated two kinds of ELDs, that is, yellow electroluminescent device (B-ELD), blue electroluminescent device (B-ELD). The basic st.uctures of Y-ELD and B-ELD are ITO (Indium Tin Oxide)/phosphor layer/Insulator layer/Carbon electrode and ITO/Phosphor layer/Insulating layer/carbon electrode, respectively. Another structures of ITO/Phosphor and Insulator mixture layer/Backelectrode are introduced. EL spectra and luminance of two types of ELDs were measured by changing voltage at fixed frequency 0.4kHz, 1.5kHz. Blue and yellow phosphors prepared in this work show $50cd/m^2\;and\;30cd/m^2$ of luminance at 400Hz, 150V.

Synthesis of Lu3Al5O12:Ce3+ Nano Phosphor by Coprecipitation Method, and Their Optical Properties (공침법을 이용한 Lu3Al5O12:Ce3+ 나노 형광체 합성과 광학적 특성 분석)

  • Kang, Taewook;Kang, Hyeonwoo;Kim, Jongsu;Kim, Gwangchul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.51-56
    • /
    • 2019
  • LuAG:Ce(Lu3Al5O12:Ce3+) nano phosphor were synthesized by applying the coprecipitation method. It is used to increase the color rendering of phosphor ceramic plate for high power LEDs and laser lighting. Internal quantum efficiency and absorption of LuAG:Ce nano phosphor are 51.5 % and 64.4 %, respectively, which is higher than the previously studied nano phosphors. The maximum absorption wavelength of this phosphor is 450 nm blue light, and the emission wavelength is 510 nm. The emission wavelength shifted to longer wavelength when the concentration of Ce increased in the heat treatment of the reducing atmosphere. Thermal quenching of LuAG nano phosphor was 70 % at 200 ℃, it was explained by their significant quenching of all raman scattering modes, implying the restriction of electron-phonon couplings caused by their defects.