• Title/Summary/Keyword: Light-emitting diodes

Search Result 1,318, Processing Time 0.033 seconds

AC-Based Characterization of Quantum-Dot Light-Emitting Diodes

  • Hwang, Hee-Soo;Lee, Ki-Hun;Park, Chan-Rok;Yang, Heesun;Hwang, Jinha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.466-466
    • /
    • 2013
  • Quantum-dot materials have introduced novel applications in organic light-emitting diodes and solar cells. The size controllability and structure modifications have continuously been upgrading the applicability to optoelectronic and flat-panel displays. In particular, quantum-dot organic light-emitting diodes (QLEDs) are a device driven through the electrical field applied to the electrical diodes. The QLEDs are affected by the constituent materials and the corresponding device structures. Conventionally, the electrical properties are characterized only in terms of dc-based current-voltage characteristics. The dynamic change in light-emitting diodes should be characterized in emitted and non-emitted states. Therefore, the frequency-dependent impedance can offer different information on the electrical performance in QLED. The current work reports an auxiliary information on the electrical and optical features originating from quantum-dot organic light-emitting diodes. The empirical characterizations are discussed towards an experimental tool in optimizing the light-emitting diodes.

  • PDF

Charge Trapping Host Structure for High Efficiency in Phosphorescent Organic Light-Emitting Diodes

  • Lee, Jun-Yeob
    • Journal of Information Display
    • /
    • v.9 no.2
    • /
    • pp.14-17
    • /
    • 2008
  • A charge trapping host structure was developed to improve the light-emitting efficiency of green phosphorescent organic light-emitting diodes. N, N'-dicarbazolyl-3,5-benzene(mCP) and a spirobifluorene based triplet host(PHl) were co-deposited as hosts in the emitting layer and the device performance was examined according to the composition mCP and PH1. The results showed that the quantum efficiency could be improved by 30 % using a mixed host of mCP and PH1.

Wear Of Resin Composites Polymerized By Conventional Halogen Light Curing And Light Emitting Diodes Curing Units (HALOGEN LIGHT CURING UNIT 과 LIGHT EMITTING DIODES CURING UNIT 을 이용하여 중합되어진 복합레진의 마모 특성 비교)

  • 이권용;김환;박성호;정일영;전승범
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1057-1060
    • /
    • 2004
  • In this study, the wear characteristics of five different dental composite resins cured by conventional halogen light and LED light sources were investigated. Five different dental composite resins of Surefil, Z100, Dyract AP, Fuji II LC and Compoglass were worn against a zirconia ceramic ball using a pin-on-disk type wear tester with 15 N contact force in a reciprocal sliding motion with sliding distance of 10 mm/cycle at 1Hz under the room temperature dry condition. The wear variations of dental composite resins were linearly increased as the number of cycles increased. It was observed that the wear resistances of these specimens were in the order of Dyract AP > Surefil > Compoglass > Z100 > Fuji II LC. On the morphological observations by SEM, the large crack formation on the sliding track of Fuji II LC specimen was the greatest among all resin composites. Dyract AP showed the least wear with few surface damage. There is no significant difference in wear performance between conventional halogen light curing and light emitting diodes curing sources. It indicates that a light emitting diodes (LED) source can replace a halogen light source as a curing unit for composite resin restorations.

  • PDF

Development of Colloidal Quantum Dots for Electrically Driven Light-Emitting Devices

  • Han, Chang-Yeol;Yang, Heesun
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.449-469
    • /
    • 2017
  • The development of quantum dots (QDs) has had a significant impact on various applications, such as solar cells, field-effect transistors, and light-emitting diodes (LEDs). Through successful engineering of the core/shell heterostructure of QDs, their photoluminescence (PL) quantum yield (QY) and stability have been dramatically enhanced. Such high-quality QDs have been regarded as key fluorescent materials in realizing next-generation display devices. Particularly, electrically driven (or electroluminescent, EL) QD light-emitting diodes (QLED) have been highlighted as an alternative to organic light-emitting diodes (OLED), mostly owing to their unbeatably high color purity. Structural optimizations in QD material as well as QLED architecture have led to substantial improvements of device performance, especially during the past decade. In this review article, we discuss QDs with various semiconductor compositions and describe the mechanisms behind the operation of QDs and QLEDs and the primary strategies for improving their PL and EL performances.

The use of ZrO2 as an electron-injecting layer in hybrid metal-oxide/polymer light-emitting diodes

  • Tokmoldin, Nurlan;Bradley, Donal D.C.;Haque, Saif
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.779-780
    • /
    • 2009
  • New inverted architecture of a hybrid inorganic-organic light-emitting diode, utilizing ZrO2 electron-injecting layer, is presented. The thickness of the ZrO2, as well as the annealing of the light-emitting polymer, is found critical to obtain good performance. A range of light-emitting polymers is shown to operate efficiently in the proposed architecture.

  • PDF

High efficiency deep blue and pure white phosphorescent organic light emitting diodes

  • Yook, Kyoung-Soo;Jeon, Soon-Ok;Joo, Chul-Woong;Kim, Myung-Seop;Choi, Hong-Seok;Lee, Seok-Jong;Han, Chang-Wook;Tak, Yoon-Heung;Lee, Nam-Yang;Lee, Jun-Yeob
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.486-488
    • /
    • 2009
  • High efficiency deep blue and pure white phosphorescent organic light emitting diodes were developed using a new deep blue phosphorescent dopant, tris((3,5-difluoro-4-cyanophenyl)pyridine) iridium (FCNIr). A high quantum efficiency of 9.1 % with a color coordinate of (0.15, 0.16) at 1,000 cd/$m^2$ was obtained in the deep blue device and a high quantum efficiency of 15.2 % with a color coordinate (0.30, 0.32) was obtained in the pure white organic light-emitting diodes. The quantum efficiency of the pure white device is the best quantum efficiency value reported in the pure white device up to now.

  • PDF

Cathode interface engineering for stable and efficient organic light-emitting diodes

  • Qiu, Yong;Duan, Lian;Li, Yang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1199-1202
    • /
    • 2007
  • The improvement of the electron injection is of critical importance for obtaining efficient and stable organic light-emitting diodes(OLEDs). Here, we report some of our recent results on the development of new cathode interlayer materials for OLEDs. Some of our new materials show performance superior to that of LiF.

  • PDF

Dielectric Properties depending on Bias Voltage in Organic Light-emitting Diodes (유기 발광 소자의 바이어스 전압에 따른 유전 특성)

  • Oh, Yong-Cheul;Lee, Joon-Ung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.1038-1042
    • /
    • 2005
  • We have investigated dielectric properties depending on bias voltage in organic light-emitting diodes using 8-hydroxyquinoline aluminum $(Alq_3)$ as an electron transport and emissive material. We analyzed the dielectric properties of organic light-emitting diodes using impedance of characteristics. Impedance characteristics was measured complex impedance Z and phase $\theta$ in the frequency range of 40 Hz to $10^8$ Hz. We obtained complex electrical conductivity, dielectric constant, and loss tangent $(tan\delta)$ of the device at room temperature. From these analyses, we are able to interpret a conduction mechanism and dielectric properties contributed by an interfacial and orientational polarization.

Effects of Buffer Layer in Organic Light-Emitting Diodes Using Poly(N-vinylcarbazole)

  • Chung, Dong-Hoe;Hong, Jin-Woong;Kim, Tae-Wan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.173-176
    • /
    • 2003
  • We have seen the effects of buffer layer in organic light-emitting diodes using poly(N-vinylcarbazole)(PVK). Polymer PVK buffer layer was made using static spin-casting method. Two device structures were made; one is ITO/TPD/Alq3/Al as a reference and the other is ITO/PVK/TPD/Alq3/Al to see the effects of buffer layer in organic light-emitting diodes. Current-voltage characteristics, luminance-voltage characteristics and luminous efficiency were measured with a variation of spin-casting speeds. We have obtained an improvement of luminous efficiency by a factor of two and half when the PVK buffer layer is used.

White Light -Emitting Diodes with Multi-Shell Quantum Dots

  • Kim, Kyung-Nam;Han, Chang-Soo;Jeong, So-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.92-92
    • /
    • 2010
  • Replacing the existing illumination with solid-state lighting devices, such as light-emitting diodes (LEDs) are expected to reduce energy consumption and environmental pollution as they provide better efficiency and longer lifetimes. Currently, white light emitting diodes are composed of UV or blue LED with down-converting materials such as highly luminescent phosphors White light-emitting diodes (LED) were fabricated with multi-shell nanocrystal quantum dots for enhanced luminance and improved stability over time. Multi-shell quantum dots (QDs) were synthesized through one pot process by using the Successive Ionic Layer Adsorption and Reaction (SILAR) method. As prepared, the multi-shell QD has cubic lattice of zinc-blend structure with semi-spherical shape with quantum yield of higher than 60 % in solution. Further, highly fluorescent multi-shell QD was deposited on the blue LED, which resulted in QD-based white LED with high luminance with excellent color rendering properties.

  • PDF