• Title/Summary/Keyword: Light-emitting Diode

Search Result 1,407, Processing Time 0.034 seconds

Improvement of Seed Germination in Rosa rugosa (해당화의 종자 발아 연구)

  • Lee, Ji-Yeon;Lee, Ja-Hyun;Ki, Gwang-Yeon;Kim, Seung-Tae;Han, Tae-Ho
    • Horticultural Science & Technology
    • /
    • v.29 no.4
    • /
    • pp.352-357
    • /
    • 2011
  • Rose seed shows low germination percentages (about 20%) because it has a high amount of substances that inhibit germination in the pericarp. We investigated the effect of orientation of achene, the day after pollination (DAP), and cold storage with or without half-cut in achene for the germination percentage in R. rugosa. Germination percentages of intact or half-cut achenes were investigated in a 16-hour photoperiod at $25^{\circ}C$ room on basal MS medium for two weeks. In germination percentage, maximum 100% was measured within one week when half-cut achenes were cultured on an orientation that the embryos facing to the light. Half-cut achenes at 90 DAP were germinated 100% regardless of cold storage. Various LED lights (red, blue, yellow, green, and white) were illuminated over the half-cut achenes to gain the effect of light color. Germination percentage of R. rugosa seeds under blue LED reached the greatest with 90% within one week of culture and these seedlings were the best with a steady growth rate. It is concluded that half-cut achenes would be an effective method to improve seed germination in R. rugosa without stratification or scarification. This system could be applied to breeding studies in rose cultivars.

Optical thyristor operating at 1.55 μm (장파장에서 동작하는 Optical Thyristor)

  • Kim, Doo-Gun;Kim, Hyung-Soo;Jung, Sung-Jae;Choi, Young-Wan;Lee, Seok;Woo, Deok-Ha;Jhon, Young-Min;Yu, Byung-Geel
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.2
    • /
    • pp.146-150
    • /
    • 2002
  • 1.55${\mu}{\textrm}{m}$ PnpN optical thyristor as a smart optical switch has potential applications in advanced optical communication systems. PnpP optical thyristors operating at 1.55${\mu}{\textrm}{m}$ are proposed and fabricated for the first time. In the optical thyristors, we employ InGaAs/InP multiple quantum well (MQW) for the active n- and p-layers. The thyristors show sufficiently nonlinear s-shape I-V characteristics and spontaneous emission. In the OFF-state, the device has a high-impedance up to switching voltage of 4.03(V). On the other hand, it has low-impedance and emits spontaneous light as a light-emitting diode in the ON-state voltage of 1.77(V), and switching voltage is changed under several light input conditions. It can be used as a header processor in optical asynchronous transfer mode (ATM), as a hard limiter in optical code division multiple access (CDMA) and as a wavelength converter in optical WDM systems.

Optical and Electrical Characteristics of GaN-based Blue LEDs after Low-current Stress (GaN계 청색 발광 다이오드에서 저전류 스트레스 후의 광 및 전기적 특성 변화)

  • Kim, Seohee;Yun, Joosun;Shin, Dong-Soo;Shim, Jong-In
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.2
    • /
    • pp.64-70
    • /
    • 2012
  • We analyzed the changes in electrical and optical characteristics of 1 $mm^2$ multiple-quantum-well (MQW) blue LEDs grown on a c-plane sapphire substrate after a stress test. Experiments were performed by injecting 50 mA current for 200 hours to TO-CAN packaged sample chips. We selected the value of injection current for stress through the junction-temperature measurement by using the forward-voltage characteristics of a diode to maintain a sufficiently low junction temperature during the test. The junction temperature at the selected injection current of 50 mA was 308 K. Experiments were performed under the assumption that the average junction temperature of 308 K did not affect the characteristics of the ohmic contact and the GaN-based materials. Before and after the stress test, we measured and analyzed current-voltage, light-current, light distribution on the LED surface, wavelength spectrum and relative external quantum efficiency (EQE). After the stress test, it was observed experimentally that the optical power and the relative EQE decreased. We theoretically investigated and experimentally proved that these phenomena are due to the increased nonradiative recombination rate caused by the increased defect density.

Effect of Accelerated Aging on the Color Stability of Dual-Cured Self-Adhesive Resin Cements

  • Kim, Ah-Rang;Jeon, Yong-Chan;Jeong, Chang-Mo;Yun, Mi-Jung;Huh, Jung-Bo
    • Journal of Korean Dental Science
    • /
    • v.8 no.2
    • /
    • pp.49-56
    • /
    • 2015
  • Purpose: The effect of accelerated aging on color stability of various dual-cured self-adhesive resin cements were evaluated in this study. Materials and Methods: Color stability was examined using three different brands of dual-cured self-adhesive resin cements: G-CEM LinkAce (GC America), MaxCem Elite (Kerr), and PermaCem 2.0 (DMG) with the equivalent color shade. Each resin cement was filled with Teflon mold which has 6 mm diameter and 2 mm thickness. Each specimen was light cured for 20 seconds using light emitting diode (LED) light curing unit. In order to evaluate the effect of accelerated aging on color stability, color parameters (Commission Internationale de l'Eclairage, CIE $L^*$, $a^*$, $b^*$) and color differences (${\Delta}E^*$) were measured at three times: immediately, after 24 hours, and after thermocycling. The $L^*$, $a^*$, $b^*$ values were analyzed using Friedman test and ${\Delta}E^*$ values on the effect of 24 hours and accelerated aging were analyzed using t-test. These values were compared with the limit value of color difference (${\Delta}E^*=3.7$) for dental restoration. One-way ANOVA and Scheff's test (P<0.05) were performed to analyze each ${\Delta}E^*$ values between cements at each test period. Result: There was statistically significant difference in comparison of color specification ($L^*$, $a^*$, $b^*$) values after accelerated aging except $L^*$ value of G-CEM LinkAce (P<0.05). After 24 hours, color difference (${\Delta}E^*$) values were ranged from 2.47 to 3.48 and $L^*$ values decreased and $b^*$ values increased in all types of cement and MaxCem Elite had high color stability (P<0.05). After thermocycling, color change's tendency of cement was varied and color difference (${\Delta}E^*$) values were ranged from 0.82 to 2.87 and G-CEM LinkAce had high color stability (P<0.05). Conclusion: Color stability of dual-cured self-adhesive resin cements after accelerated aging was evaluated and statistically significant color changes occurred within clinically acceptable range.

Changes in Fermentation Properties and Phenolic Contents of Muscat Bailey A Wine by LED Irradiation Treatment (LED irradiation이 Muscat bailey A 와인의 발효 및 페놀성 화합물의 변화에 미치는 영향)

  • Kim, Sang Wook;Han, Gi Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.4
    • /
    • pp.350-356
    • /
    • 2015
  • There have been several studies on role of hormesis with light stimulation, however, the influence of light on fermentation is still poorly understood. In this study the relationship between LED (light emitting diode) hormesis and ethanol fermentation for Muscat bailey A wine was investigated. Two LEDs, one blue ($453{\pm}4nm$) and one green ($522{\pm}3nm$), were used. Both LED groups showed an inhibited production of lactic acid. The blue LED stimulated the growth of the yeast in early stage of the fermentation. Polyphenolic compounds and their antioxidant abilities were significantly increased by the green LED. These results demonstrate that LED irradiation must bring about hormesis and affect the growth rate of yeast in the early stage of the fermentation, and the contents of phytochemicals during fermentation. These findings indicate the possible application of LED hormesis for the wine fermentation. Further studies are needed to understand how LED irradiation induces hormesis effects during the fermentation process.

Development of Customizable Fluorescence Detection System using 3D Printer (3D 프린터를 활용한 맞춤형 휴대용 형광측정 장치 개발)

  • Cho, Kyoung-rae;Seo, Jeong-hyeok;Choe, Se-woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.278-280
    • /
    • 2019
  • Flow cytometer is one of the instrument that can measure various optical properties of a single cell or microparticle. These parameters including size, granularity, and fluorescence intensity are determined by the physical and optical interaction of the cells with excitation light source. However, users have some difficulties such as high cost, size of instrument, and limited fluorescence selectivity. In addition, abundant data is also unintentionally acquired even though user wants to have a single optical parameter. For these reasons, the use of flow cytometer is more challenging for researchers to apply their study. Therefore, the proposed study aims to develop a low-cost portable fluorescence acquisition system using a commercially available light-emitting diode and photodiode. It is designed by a 3D printer, and fluorescence selectivities are increased by changing of the light source / optical filter / detection sensor. Various number sets of fluorescently labeled cells were measured, and its feasibility was evaluated through the proposed system. As a result, acquried fluorescence intensities were proportional to the concentration of the cells and showed high linearity.

  • PDF

Effects of nutrient solution and artificial light on the growth and physicochemical properties of hydroponically cultivated barley (배양액과 인공광 처리가 수경재배 보리의 성장과 이화학적 특성에 미치는 영향)

  • Kim, Ju-Sung
    • Journal of Plant Biotechnology
    • /
    • v.48 no.2
    • /
    • pp.77-85
    • /
    • 2021
  • Hydroponic cultivation, in which crops are grown without soil and are unaffected by the weather, has many advantages over conventional soil cultivation. The crop's growth can be further accelerated by using nutrient solution in place of water. This study investigated the growth and physicochemical properties of hydroponic barley sprouts under various nutrient solution and artificial light treatments. The shoot, root, and total plant length increased over time, with the fastest growth occurring in the nutrient solution and light-emitting diode (LED) treatments. Fresh and dry plant weights were higher in the fluorescent lamp treatment than in the LED treatment. Barley sprout powder color differed slightly by treatment, with the Hunters L value ranging from 50.79 to 53.77; Hunters a value from -6.70 to -4.42; and Hunters b value from 13.35 to 14.76. The Hunters L and Hunters b values were highest in the LED treatment, whereas the Hunters a value was relatively highest in the fluorescent lamp treatment. The total phenol content was higher in the control than in the nutrient solution treatment; however, the total flavonoid content showed the opposite pattern to that of total phenol content, being highest in plants that were grown in nutrient solution. The Trolox equivalent antioxidant capacity (TEAC) was higher in the control group than in the nutrient solution group. The ferric ion reducing antioxidant power (FRAP) was higher in the fluorescent treatment group than in the LED treatment group. The total amino acid composition ranged from 106.82 to 122.63 mg/g dry powder, with the essential amino acid composition ranging from 47.01 to 56.19 mg/g, and non-essential amino acid composition from 67.86 to 77.66 mg/g. The most frequently detected compositional amino acid was aspartic acid, followed by glutamic acid, alanine, leucine, and valine.

Bond strength of fiber reinforced composite after repair (섬유 강화 컴포지트의 수리 후 접합 강도)

  • Kim, Min-Jung;Kim, Kyung-Ho;Choy, Kwang-Chul
    • The korean journal of orthodontics
    • /
    • v.36 no.3 s.116
    • /
    • pp.188-197
    • /
    • 2006
  • Fiber reinforced composite (FRC) is usually used as a connector joining a few teeth into one unit in orthodontics. However, fracture often occurs during the two to three years of the orthodontic treatment period due to repeated occlusal loading or water sorption in the oral environment. We simulated the repair by overlapping and attaching portions of two FRC strips in the middle and performed a three-point bending test to investigate the changes of the repair strength among the different FRC groups. The specimens were grouped according to the overlapping lengths of the two FRC strips, which were 1, 2, 3 and 4 mm (group E1, E2, E3 and E4, respectively) and the control group consisted of unrepaired, intact FRC strips. Each group consisted of 6 specimens and were cured with a light emitting diode curing unit. Group E4 showed the highest maximum loads of 2.67 N, then the control group (2.39 N), group E3 (2.35 N), E2 (2.10 N), and E1 (1.75 N) in decreasing order. Group E4 also showed the highest stiffness, which was 2.32 N/mm, however, the stiffness of group E3 (2.06N/mm) was higher than that of the control group (1.88 N/mm). According to the visual examination, the specimens tended to be bent rather than being fractured into two pieces with an increased length of overlapping portions. The above results suggest that a minimum overlapping length of 3 mm was necessary to obtain an adequate repair of a 10 mm length of FRC connector. In addition, the critical section adjacent to the joint area, where the thickness decreased abruptly, should be reinforced with flowable resin to minimize the bending tendency.

A Study on Cu-based Catalysts for Oxygen Removal in Nitrogen Purification System (질소 정제 시스템의 산소 제거용 구리계 촉매 연구)

  • Oh, Seung Kyo;Seong, Minjun;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.9-16
    • /
    • 2021
  • Since the active matrix organic light-emitting diode (AMOLED) encapsulation process is very vulnerable to moisture and oxygen, high-purity nitrogen with minimal moisture and oxygen must be used. In this study, a copper-based catalyst used to remove oxygen from nitrogen in the AMOLED encapsulation process was optimized. Two-component and three-component catalysts composed of CuO, Al2O3, or ZnO were prepared through a co-precipitation method. The prepared catalysts were characterized by using BET, XRD, TPR, and XRF analysis. In order to verify the oxygen removal performance of the catalyst, several catalytic reactions were conducted in a fixed bed reactor, and the corresponding oxygen contents were measured through an oxygen analyzer. In addition, reusability of the catalysts was proven through repetitive regeneration. The properties and oxygen removal capacity of the catalysts prepared with CuO and Al2O3 ratios of 6 : 4, 7 : 3, and 8 : 2 were compared. The number of active sites of the catalyst with a ratio of CuO and Al2O3 of 8 : 2 was the highest among the 2-component catalysts. Moreover, the reducibility of the catalyst with a ratio of CuO and Al2O3 of 8 : 2 was the best as it had the highest CuO dispersion. As a result, the oxygen removal ability of the catalyst with a ratio of CuO and Al2O3 of 8 : 2 was the best among the 2-component catalysts. The best oxygen removal capacity was obtained when 2wt% of ZnO was added to the sub-optimized catalyst (i.e., CuO : Al2O3 = 8 : 2) probably due to its outstanding reducibility. Furthermore, the optimized catalyst kept its performance during a couple of regeneration tests.

Effect of LED as Light Quality on the Germination, Growth and Physiological Activities of Broccoli Sprouts (LED 광질이 브로콜리 새싹의 발아, 생장 및 생리활성에 미치는 영향)

  • Cho, Ja-Yong;Son, Dong-Mo;Kim, Jong-Man;Seo, Beom-Seok;Yang, Seung-Yul;Bae, Jong-Hyang;Heo, Buk-Gu
    • Journal of Bio-Environment Control
    • /
    • v.17 no.2
    • /
    • pp.116-123
    • /
    • 2008
  • This study was carried out to investigate into the effect of light-emitting diode (LED) for the light quality as a light source on the broccoli seed germination and the physiological activity of vegetable sprouts. We have also germinated seeds of the broccoli and applied LED as a light quality such as blue, green, red, white, yellow and red + blue color lights to their sprouts for 14 hours and kept dark for 10 hours at the temperature of $25^{\circ}C$ (day)/$18^{\circ}C$ (night). Broccoli sprouts were extracted by methanol and their physiological activities were examined. All broccoli seeds were germinated at 3 days after seeding regardless of the light color. Total sprout fresh weight were mostly became highest by 0.389g (10 plants) at 8 days after seeding when their sprouts were grown under blue color light. Total phenol compound contents in broccoli sprouts were extremely increased by $83.0\;mg{\cdot}L^{-1}$ under the white light, and total flavonoid contents were most much more by $72.6\;mg{\cdot}L^{-1}$ under the blue light. DPPH radical scavenging activity at $2,000\;mg{\cdot}L^{-1}$ were most highest by 93.5% in broccoli sprouts grown under the white light. Nitrite radical scavenging activity at the concentration of $500\;mg{\cdot}L^{-1}$ in sprout extracts were the most increased by 66.9% under the yellow light, and tyrosinase inhibition activity at $2,000\;mg{\cdot}L^{-1}$ in sprout extracts were by 14.5% under red light.