• 제목/요약/키워드: Light-absorbing aerosol

검색결과 8건 처리시간 0.022초

다파장 Dual-spot Aethalometer를 이용한 갈색탄소의 광흡수계수 평가 (Estimation of Light Absorption by Brown Carbon Particles using Multi-wavelength Dual-spot Aethalometer)

  • 유근혜;유재명;박승식
    • 한국대기환경학회지
    • /
    • 제34권2호
    • /
    • pp.207-222
    • /
    • 2018
  • In this study, light absorption of carbonaceous species in $PM_{2.5}$ was investigated using a dual-spot 7-wavelength Aethalometer(model AE33) with 1-min time interval between January 01 and September 30, 2017 at an urban site of Gwangju. During the study period, two Asian dust (AD) events occurred in April (AD I) and May (AD II), respectively, during which light absorption in total suspended particles was observed. Black carbon (BC) was the dominant light absorbing aerosol component at all wavelengths over the study period. Light absorption coefficients by aerosol particles were found to have 2.7~3.3 times higher at 370 nm than at 880 nm. This would be attributed to light absorbing organic aerosols, which is called brown carbon (BrC), as well as BC as absorbing agents of aerosol particles. Monthly average absorption ${{\AA}}ngstr{\ddot{o}}m$ exponent ($AAE_{370-950nm}$) calculated over wavelength range of 370~950 nm ranged from 1.10 to 1.35, which was lower than the $AAE_{370-520nm}$ values ranging from 1.19~1.68 that was enhanced due to the presence of BrC. The estimated $AAE_{370-660nm}$ of BrC ranged from 2.2 to 7.5 with an average of 4.22, which was fairly consistent to the values reported by previous studies. The BrC absorption at 370 nm contributed 10.4~28.4% to the total aerosol absorption, with higher contribution in winter and spring and lower in summer. Average $PM_{10}$ and $PM_{2.5}$ concentrations were $108{\pm}36$ and $24{\pm}14{\mu}g/m^3$ during AD I, respectively, and $164{\pm}66$ and $43{\pm}26{\mu}g/m^3$ during AD II, respectively, implying the greater contribution of local pollution and/or regional pollution to $PM_{2.5}$ during the AD II. BC concentration and aerosol light absorption at 370 nm were relatively high in AD II, compared to those in AD I. Strong spectral dependence of aerosol light absorption was clearly found during the two AD events. $AAE_{370-660nm}$ of both light absorbing organic aerosols and dust particles during the AD I and II was $4.8{\pm}0.5$ and $6.2{\pm}0.7$, respectively. Higher AAE value during the AD II could be attributed to mixed enhanced urban pollution and dust aerosols. Absorption contribution by the light absorbing organic and dust aerosols estimated at 370 nm to the total light absorption was approximately 19% before and after the AD events, but it increased to 32.9~35.0% during the AD events. In conclusion, results from this study support enhancement of the aerosol light absorption due to Asian dust particles observed at the site.

광흡수성 분체입자에 대한 레이저산란광 분체입도측정기의 반응 특성 (Response of laser light active scattering aerosol spectrometer to light-absorbing aerosol particulates)

  • ;정인석;조경국
    • 오토저널
    • /
    • 제6권2호
    • /
    • pp.55-63
    • /
    • 1984
  • Berglund-Liu 진동방식 단분산 분체입자 발생기(Berglund-Liu vibrating orifice monodisperse aerosol generator)에 의하여 제작한 단분산 광흡수성 표준분체입자를 사용하여 레이저 산란광 분체입도 측정기 (Knollenberg active scattering aerosol spectrometer)의 반응특성을 조사하 였다. 실험결과, 기기의 반응특성은 Mie 산란이론에 의하여 계산한 이론치와 매우 잘 일치하며 특히 광흡수성 분체입자는 광통과성 분체입자가 다의적인 특성을 나타내는 것에 반하여 거의 단조증가하는 일의적인 특성을 가지고 있으며 광흡수성 분체입자의 반응특성이 제작자의 교정 치에 가까운 결과를 나타내었다.

  • PDF

GOCI 자료를 이용한 서울 지역 고농도 미세먼지와 옅은 황사 시 에어로졸 광학적 특성 분석 (Analysis of Aerosol Optical Properties for High Particulate Matters and Light Asian Dust in Seoul Using GOCI)

  • 김덕래;최원준;최명제;김지영;조아라;김상균;김준;문경정
    • 한국대기환경학회지
    • /
    • 제33권3호
    • /
    • pp.233-240
    • /
    • 2017
  • To distinguish between high particulate matter (HPM) and light Asian dust (LAD) events, aerosol optical properties from GOCI were investigated in Seoul from 2014 to 2016. The poor air quality case caused by fine atmospheric particulate matter (i.e., 80<$PM_{10}$<$400{\mu}g/m^3$) is clearly separated from the case of heavy Asian dust that generally shows the $PM_{10}$ concentration more than $400{\mu}g/m^3$. In this study, we have found eight cases for the poor air quality and divided them into the two events(i.e., HPM and LAD). In case of aerosol optical depth (AOD), there was no big difference between two events. However, Angstrom exponent (AE) for HPM events was greater than 1, while that for LAD events less than 1. As a result of comparing aerosol type, non-absorbing fine mode aerosols were dominant for HPM events, but coarse and absorbing coarse mode aerosols for LAD events. Therefore, AE and aerosol type from GOCI can be used to distinguish between two events effectively.

동아시아와 남아시아지역에서 관측된 에어러솔의 광흡수 특성 비교 (Comparison of light-absorption properties of aerosols observed in East and South Asia)

  • 이혜정;김상우;윤순창;이시혜;김지형
    • 대기
    • /
    • 제21권3호
    • /
    • pp.301-309
    • /
    • 2011
  • In this study, we compared light-absorption properties of aerosols observed in East and South Asia from black carbon (BC) mass concentration, aerosol scattering (${\sigma}_s$) and absorption (${\sigma}_a$) coefficients measurements at four sites: Korea Climate Observatory-Gosan (KCO-G), Korea Climate Observatory-Anmyeon (KCO-A), Maldives Climate Observatory-Hanimaadhoo (MCO-H) and Nepal Climate Observatory-Pyramid (NCO-P). No significant seasonal variations of BC mass concentration, ${\sigma}_s$ and ${\sigma}_a$, despite of wet removal of aerosols by precipitation in summer, were observed in East Asia, whereas dramatic changes of light-absorbing aerosol properties were observed in South Asia between dry and wet monsoon periods. Although BC mass concentration in East Asia is generally higher than that observed in South Asia, BC mass concentration at MCO-H during winter dry monsoon is similar to that of East Asia. The observed solar absorption efficiency (${\alpha}$) at 550 nm, where ${\alpha}={\sigma}_a/({\sigma}_s+{\sigma}_a)$, at KCO-G and KCO-A is higher than that in MCO-H due to large portions of BC emission from fossil fuel combustion. Interestingly, ${\alpha}$ at NCO-P is 0.14, which is two times great than that in MCO-H and is about 40% higher than that in East Asia, though BC mass concentration at NCO-P is the lowest among four sites. Consistently, the highest elemental carbon to sulphate ratio is found at NCO-P.

Absorption properties and size distribution of aerosol particles during the fall season at an urban site of Gwangju, Korea

  • Park, Seungshik;Yu, Geun-Hye
    • Environmental Engineering Research
    • /
    • 제24권1호
    • /
    • pp.159-172
    • /
    • 2019
  • To investigate the influence of pollution events on the chemical composition and formation processes of aerosol particles, 24-h integrated size-segregated particulate matter (PM) was collected during the fall season at an urban site of Gwangju, Korea and was used to determine the concentrations of mass, water-soluble organic carbon (WSOC) and ionic species. Furthermore, black carbon (BC) concentrations were observed with an aethalometer. The entire sampling period was classified into four periods, i.e., typical, pollution event I, pollution event II, and an Asian dust event. Stable meteorological conditions (e.g., low wind speed, high surface pressure, and high relative humidity) observed during the two pollution events led to accumulation of aerosol particles and increased formation of secondary organic and inorganic aerosol species, thus causing $PM_{2.5}$ increase. Furthermore, these stable conditions resulted in the predominant condensation or droplet mode size distributions of PM, WSOC, $NO_3{^-}$, and $SO{_4}^{2-}$. However, difference in the accumulation mode size distributions of secondary water-soluble species between pollution events I and II could be attributed to the difference in transport pathways of air masses from high-pollution regions and the formation processes for the secondary chemical species. The average absorption ${\AA}ngstr{\ddot{o}}m$ exponent ($AAE_{370-950}$) for 370-950 nm wavelengths > 1.0 indicates that the BC particles from traffic emissions were likely mixed with light absorbing brown carbon (BrC) from biomass burning (BB) emissions. It was found that light absorption by BrC in the near UV range was affected by both secondary organic aerosol and BB emissions. Overall, the pollution events observed during fall at the study site can be due to the synergy of unfavorable meteorological conditions, enhanced secondary formation, local emissions, and long-range transportation of air masses from upwind polluted areas.

지역별 에어로졸 화학성분 농도 및 광학특성 비교 (Comparison of the concentration characteristics and optical properties of aerosol chemical components in different regions)

  • 소윤영;송상근;최유나
    • 한국환경과학회지
    • /
    • 제28권1호
    • /
    • pp.107-123
    • /
    • 2019
  • The aerosol chemical components in $PM_{2.5}$ in several regions (Seoul, Busan, Daejeon, and Jeju Island) were investigated with regard to their concentration characteristics and optical properties. The optical properties of the various aerosol components (e.g., water-soluble, insoluble, Black Carbon (BC), and sea-salt) were estimated using hourly and daily aerosol sampling data from the study area via a modeling approach. Overall, the water-soluble component was predominant over all other components in terms of concentration and impact on optical properties (except for the absorption coefficient of BC). The annual mean concentration and Aerosol Optical Ddepth (AOD) of the water-soluble component were highest in Seoul (at the Gwangjin site) ($26{\mu}g/m^3$ and 0.29 in 2013, respectively). Further, despite relatively moderate BC concentrations, the annual mean absorption coefficient of BC ($21.7Mm^{-1}$) was highest in Busan (at the Yeonsan site) in 2013, due to the strong light absorbing ability of BC. In addition, high AODs for the water-soluble component were observed most frequently in spring and/or winter at most of the study sites, while low values were noted in summer and/or early fall. The diurnal variation in the AOD of each component in Seoul (at the Gwangjin site) was slightly high in the morning and low in the afternoon during the study period; however, such distinctions were not apparent in Jeju Island (at the Aweol site), except for a slightly high AOD of the water-soluble component in the morning (08:00 LST). The monthly and diurnal differences in the AOD values for each component could be attributed to the differences in their mass concentrations and Relative Humidities (RH). In a sensitivity test, the AODs estimated under RH conditions of 80 and 90% were factors of 1.2 and 1.7 higher, respectively, than the values estimated using the observed RH.

공중화분에 의한 시정장애 현상의 물리적 및 화학적 특성 규명 (Physico-Chemical Characteristics of Visibility Impairment by Airborne Pollen)

  • 김경원
    • 한국대기환경학회지
    • /
    • 제22권6호
    • /
    • pp.863-875
    • /
    • 2006
  • Intensive visibility monitoring was conducted to investigate physical and chemical characteristics of visibility impairment by airborne pollen. Light attenuation coefficients were optically measured by a transmissometer, a nephelometer, and an aethalometer. Elemental, ionic, and carbonaceous species were chemically analyzed on the filters collected by $PM_{2.5}$ and $PM_{10}$ samplers. Aerosol size distribution was analyzed using a cascade impactor during airborne pollen period. Airborne pollen count was calculated using a scanning electron microscope. Airborne pollen was emitted into the atmosphere in springtime and funker degraded visibility through its scattering and absorbing the light. Average light extinction coefficient was measured to be $211{\pm}36Mm^{-1}$ when airborne pollen was not observed. But it increased to $459{\pm}267Mm^{-1}$ during the airborne pollen period due to increase of average $PM_{2.5}$ and $PM_{10}$ mass concentration and relative humidity and airborne pollen count concentration for $PM_{10}$, which were measured to be $46.5{\pm}29.1{\mu}g\;m^{-3},\;97.0{\pm}41.7{\mu}g\;m^{-3},\;54.1{\pm}11.6%$, and $68.2{\pm}89.7m^{-3}$, respectively. Average light extinction efficiencies for $PM_{2.5}$ and $PM_{10}$ were calculated to be $5.9{\pm}0.9$ and $4.5{\pm}0.8m^2 g^{-1}$ during the airborne pollen period. Light extinction efficiency for $PM_{10}$ increased further than that for $PM_{2.5}$. The average light extinction budget by airborne pollen was estimated to be about 24% out of the average measured light extinction coefficient during the airborne pollen period.

에어로졸 광학변수가 대기복사가열률 산정에 미치는 민감도 분석 (Sensitivity of Aerosol Optical Parameters on the Atmospheric Radiative Heating Rate)

  • 김상우;최인진;윤순창;김유미
    • 대기
    • /
    • 제23권1호
    • /
    • pp.85-92
    • /
    • 2013
  • 2001년 4월 제주 고산기후관측소에서 AERONET sun/sky radiometer와 MPL을 통해 관측된 에어로졸 광학적 두께, 단산란 알베도, 비대칭 변수, 에어로졸 소산계수 프로파일 등을 대기복사모델의 입력 자료로 이용하여 대기가열효과를 산정하고, 이들 광학변수가 대기복사가열률에 미치는 영향을 분석하였다. 본 연구에서는 NCAR Climate Community Model (CCM-3.6)에 포함되어 있는 복사 모듈인 Column Radiation Model (CRM-2.1.2)을 연직 54층으로, AERONET sun/sky radiometer로부터 관측된 4 파장 (440, 670, 870, 그리고 1020 nm)에서의 관측 자료를 19개의 파장에서 계산 가능하도록 수정하였다. 에어로졸층이 존재하지 않은 맑은 날 (4월 14일과 16일)은 지표면과 대기상단에서의 에어로졸 직접복사강제력이 각각 $-20{\sim}-25\;W\;m^{-2}$$-10{\sim}-15\;W\;m^{-2}$로, 대기 중 흡수는 $+10{\sim}+15\;W\;m^{-2}$였다. 에어로졸층이 관측된 4월 15일과 4월 17~18일의 경우 지표면, 대기, 대기상단의 에어로졸 복사강제력이 맑은 날에 비해 3~4배 정도 크게 나타났다. 4월 14일과 16일에의 대기복사가열률 (${\Delta}H$)는 $1{\sim}2\;K\;day^{-1}$ 범위에서 산출되었으며, 4월 15일과 4월 17~18일에는 MPL 관측에서 보여지는 에어로졸층에서의 ${\Delta}H$${\Delta}H_{aerosol}$가 각각 $3\;K\;day^{-1}$ 이상과 $1{\sim}3\;K\;day^{-1}$ 범위에서 산정되었다. 에어로졸 광학적 두께와 비대칭 변수의 변화에 따른 에어로졸층의 ${\Delta}H$ 변화는 미미하였으나, 단산란 알베도의 10% 변화는 지표면과 대기상단에서의 에어로졸 직접복사강제력의 30%, 대기복사강제력의 약 60%, 그리고 에어로졸층 ${\Delta}H$의 약 35% 변화를 유발하였다. 이는 에어로졸 광학적 두께 10% 변화와 비교하여 대기흡수 또는 에어로졸층의 가열 및 냉각 효과가 6배 가량 큰 결과로, 태양복사를 효과적으로 잘 흡수하는 에어로졸의 양에 의해 대기 가열 또는 ${\Delta}H$가 크게 좌우됨을 의미한다. 2001년 4월부터 2008년 3월까지 제주 고산기후관측소에서의 AERONET sun/sky radiometer 관측 자료를 이용하여 계산한 ${\Delta}H$${\Delta}H_{aerosol}$의 월변화를 보면, ${\Delta}H$는 4~8월 사이에 대류권 하부에서 약 $1.0\;K\;day^{-1}$ 이상으로 뚜렷하게 나타났으나, ${\Delta}H_{aerosol}$의 경우 2월부터 6월까지 고도 2 km 이하에서 약 $0.8\;K\;day^{-1}$ 이하의 범위에서 나타나는데, 이는 대부분의 에어로졸이 지표면 부근의 대기경계층에 존재하며, 봄철 황사와 오염 에어로졸의 증가에 의한 영향으로 판단된다.