• Title/Summary/Keyword: Light weight soil

Search Result 156, Processing Time 0.027 seconds

Engineering Properties of the Light Weight Soil Mixed with Phosphogypsum and Recycled EPS Beads (인산석고와 폐 EPS Beads를 혼합한 경량토의 공학적 특성)

  • Suh, Dong-Eun;Kim, Young-Sang;Lee, Woo-Bum;Kim, Won-Bong;Yu, Bong-Sun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.492-497
    • /
    • 2008
  • The objective of this research is an investigation of engineering properties of weathered granite soil mixed with Phosphogypsum and recycled EPS beads as an light-weighted soil. A series of geotechnical laboratory tests including physical index test, compaction test, CBR test and direct shear test were performed for various mixing ratios. Based on the laboratory test results, it was found that the maximum dry unit weight of the light weight soil ranges $1.46{\sim}1.61g/cm^3$ and the maximum dry unit weight decreases about 11~19.3% with the increase of amount of the recycled EPS beads and the optimum moisture content increase. Since the CBR values of the light weight soil ranges 10.4~18.4%, the light weight soil mixed with Phosphogypsum and recycled EPS beads can be used as a light weight backfill material on the soft soil.

  • PDF

Engineering Characteristics of the Light Weight Soil Used Recycled Stylofoam Beads and Disposal Soils (폐스티로폴 입자와 현장 발생토를 활용한 경량혼합토의 공학적 특성)

  • Shin, Bang-Woong;Lee, Jong-Kyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.1 no.1
    • /
    • pp.43-50
    • /
    • 2000
  • This paper presents the engineering property of light weight soil made of soil mixed with recycled stylofoam and stabilizer. Recycled stylofoam beads is able to use by lightweight fill materials because it is light, adiabatic, and effective for vibration interception. Especially, recycled stylofoam beads is easy to supply because stylofoam have been recycle item in 1996. In this study, physical and geotechnical properties of the light weight mixed soil(weathered granite soil mixed with Stylofoam Beads) were analyzed by laboratory experiments to examine its suitability for backfill materials. Laboratory tests were performed to evaluated strength, bearing capacity, weight, permeability, microphotograph analysis with variation of mixing ratio. Based on the results, it is concluded that the use of recycled stylofoam beads is acceptable lightweight fill.

  • PDF

Friction Characteristics of Geogrid -Light Weight Soil Mixed with Small Pieces of Waste EPS (지오그리드-폐 EPS조각 혼합경량토의 마찰특성)

  • 김홍택;방윤경
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.163-184
    • /
    • 1996
  • In this study, physical and geotechnical properties of the light weight mixed soil( weathered granite soil mixed with small pieces of waste EPS) were analyzed by laboratory experiments to examine its suitability for backfill materials of the reinforced-earth walls. Friction characteristics of geogrid-light weight sized soil were also investigated by performing the pullout tests for two types of geogrids having different flexural rigidity. Also a procedure was proposed to evaluate friction strength between geogrid and light weight miffed soil by using a stress-strain relationship of the orthotropic composite material subjected to both longitudinal and vertical loadings. By the procedure proposed in this study, values of the calibration coefficients ul and uf applicable for the evaluation of friction strengths between two types of geogrids and light weight mixed soils were further presented.

  • PDF

Stability Analysis of the Light Weight Earth-Retaining Structure in the Trench Excavation (트렌치 굴착에 있어서 경량 흙막이 구조체의 안정성 해석)

  • Seo , Sung-Tag;Heo , Chang-Han;Kim , Hee-Duck;Jee , Hong-Kee
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.2
    • /
    • pp.93-103
    • /
    • 2004
  • In trench excavation, essential factor of earth-retaining temporary work structure should be easy taking to pieces and movement, and dead weight must be less. This paper studies about the light weight material and application as earth-retaining structure to prevent the slope failure of sand soil ground caused by the variation of groundwater level in trench excavation. That is, light weight earth-retaining structural is proposed and a simulation with FEM on application of proposed structural in sandy soil is presented. The results are summarized as follows; (1) The study proposed FRP H-shaped pannel for the light weight member, and also presented estimation method about stability. (2) Mechanical property (bending moment, shear force, axial force, displacement) were changed according to groundwater level, but these values had been within enough safety rate and allowable stress. Therefore, proposed light weight pannel with FRP is available for bracing structure in trench excavation.

Axial strain - Volumetric strain Relationship of Light-Weighted Foam Soil (경량기포혼합토의 축변형율 - 체적변형율 관계)

  • 김주철;김병탁;윤길림;서인식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.853-860
    • /
    • 2003
  • Relationship between axial strain and volumetric strain of Light-Weighted Foam Soil (LWFS) are investigated. LWFS is composed of the dredged soil from offshore, cement and foam to reduce the unit weight and also increase compressive strength. For this purpose. the triaxial compression tests are carried out on the prepared specimens of LWFS with various conditions such as initial water contents, cement contents, and curing stresses, The test results of LWFS Indicated that the axial strain - volumetric strain relationship is almost linearity with increase cement contents and the unit weight but the relationship is non-linearity with decrease cement contents and the unit weight. In this study, it is found that assuming no change of cross section area of LWFS, axial strain occurring the poisson's ratio of zero, that the axial strain same to volumetric strain, steeply increases with decrease the unit weight, initial water content, and cement contents.

  • PDF

Effects of Temperature, Soil Moisture, Soil pH and Light on Root Gall Development of Chinese Cabbage by Plasmodiophora brassicae (배추무사마귀병 뿌리혹의 형성에 미치는 온도, 토양수분, 토양 pH, 광의 영향)

  • 김충회
    • Plant Disease and Agriculture
    • /
    • v.5 no.2
    • /
    • pp.84-89
    • /
    • 1999
  • Development of root galls of clubroot disease on Chinese cabbage seedlings was first observed 17days after inoculation of Plasmodiophora brassicae at $25^{\circ}C$ 4-11days earlier than at 5, 20, 3$0^{\circ}C$ and 35$^{\circ}C$. Subsequent enlargement of root galls was also fastest at $25^{\circ}C$ and 2$0^{\circ}C$ but delayed at 15$^{\circ}C$ and 3$0^{\circ}C$ or above. Chinese cabbage seedlings with root gall formation showed reduction in number of leaves above ground fresh weight and amount of root hairs but increase in root weight, Root galls development was highest at soil moisture level of 80% of maximum soil moisture capacity than at 60% and 100%. Optimum soil pH for root gall development was pH 6 although root galls were formed at a range of pH 5 to 8. Period of light illumination also affected root gall development with the greatest gall development at 12hr/12hr in light/dark period and the least at 8hr/16hr. Site of root gall formation and gall shape did not differ greatly among treatments of temperature soil moisture pH and light experiments.

  • PDF

Engineering Characteristics of the Light Weight Soil Using Phosphogypsum and EPS Beads (인산석고-EPS 조각을 활용한 경량혼합토의 공학적 특성)

  • Kim, Youngsang;Suh, Dongeun;Kim, Wonbong;Lee, Woobum
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.19-25
    • /
    • 2009
  • The current study developed light-weighted mixed soil that can solve problems related with soft soil such as ground subsidence, sliding and lateral displacement of ground. By reducing weight of reclaimed soil through mixing phosphogypsum and recycled EPS beads with the weathered granite soil. A series of geotechnical laboratory tests including physical index test, compaction test, CBR test, and direct shear test were performed and engineering properties were reviewed in order to assess applicability of the light-weighted mixed soil for roads and abutment and various back-filling materials at the reclamation area. Based on the laboratory test results, it was found that the maximum dry unit weight of the light-weighted soil ranges $14.32{\sim}15.79kN/m^3$ and the optimum water content ranges 21.91~24.23%, which means there is 11~19.3% weight decrease effect when comparing with general weathered granite soil. Also it was found that the corrected CBR value ranges 10.4~18.4% satisfying the domestic regulations on road subgrade and back-filling material. In addition, as for shear strength parameter, cohesion ranges 10.79~18.64 kPa and internal frictional angle ranges $35.4{\sim}37.2^{\circ}$, which are similar with those of general construction soil and back-filling material used in Korea. So it can be concluded that light-weighted mixed soil with phosphogypsum can be used effectively for soft reclamation ground as actual filling material and back-filling material. From the current study, it was found that light-weighted mixed soil with phosphogypsum has not only weight reduction effect, but also has no special problems in shear strength and bearing capacity. Therefore, it is expected that phosphogypsum can be recycled in bulk as road subgrade and back-filling material at the reclamation area.

  • PDF

Construction of Smart Soil Using In-Situ clay soil (현장 발생토를 이용한 경량고화토(Smart Soil)의 시공사례)

  • Jung, Gwak-Soo;Lim, Yoon-Gil;Jeong, Woo-Seob
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.473-485
    • /
    • 2010
  • Lightweight materials using in-situ clay soil contain large amounts of fine grain and cement for increasing the strength, lighter weight to increase liquidity for the foam and the bulk of the material is conducted by the water. Domestic cases, Light weight soil to improve cementation and lightness using demountable mixing device is defined Smartsoil. Typical features are their self-leveling, self-compaction, folwability. By adjusting the amount of cement, the strength can be controlled artificially. And re-excavation is easy. In this paper, pre-loading method using the road due to the displacement of adjacent structures under construction as an alternative SmartSoil introduces the design and construction practices. Is to discuss and improve.

  • PDF

Experimental Study on Planning Soil Depth of Green Roof System using Light-Weight Greening Block (경량식생블럭을 이용한 옥상녹화 공법의 토심계획에 관한 실험적연구)

  • Oh, Jae-Hun;Ahn, Hye-Ryeon;Kim, Kyoung-Uk;Ahn, Young-Chull;Moon, Jong-Wook
    • KIEAE Journal
    • /
    • v.13 no.3
    • /
    • pp.105-110
    • /
    • 2013
  • Green roof system is classified as intensive greening, extensive greening or mix of intensive-extensive greening. Recently, light-weigh green roof has been performed actively, because buildings have been considered loads, design and maintenance. This study was conducted to design soil depth for light-vegetation block with using bottom-ash. As a result, it was found that growth of plant had no direct effect on soil depth even it was less than 10cm. Soil depth having under 5cm could be integration of plant roots and vegetation blocks. It was also possible to grow organic vegetables through the experiment of planting. According to this experiment, as light-vegetation block with bottom-ash was used for planting, it makes design shallow soil depth. The results will help install green roof system conveniently not only new buildings but also used buildings.

Development of Light-Weight Soil Mixed With E.P.S. Using Dredged Soil (준설토를 이용한 E.P.S. 경량혼합처리토의 활용성에 관한 연구)

  • 신현영;김병일;김용수;김수삼
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.410-417
    • /
    • 2000
  • The strength properties of Light-Weighted Soils(LWS) mixed with Expanded Polystrene(E.P.S.) using uniaxial and triaxial tests are studied. Test results show that when the initial water contents of dredged soils are under 135% and the cement contents are above 1%, Light-Weight Soils are in the appropriate strength range of 2.0 lo 4.0kg/$\textrm{cm}^2$. However. E.P.S. contents had a little effects on the strength properties of LWS.

  • PDF