• Title/Summary/Keyword: Light weight mixed soil

Search Result 19, Processing Time 0.037 seconds

Engineering Properties of the Light Weight Soil Mixed with Phosphogypsum and Recycled EPS Beads (인산석고와 폐 EPS Beads를 혼합한 경량토의 공학적 특성)

  • Suh, Dong-Eun;Kim, Young-Sang;Lee, Woo-Bum;Kim, Won-Bong;Yu, Bong-Sun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.492-497
    • /
    • 2008
  • The objective of this research is an investigation of engineering properties of weathered granite soil mixed with Phosphogypsum and recycled EPS beads as an light-weighted soil. A series of geotechnical laboratory tests including physical index test, compaction test, CBR test and direct shear test were performed for various mixing ratios. Based on the laboratory test results, it was found that the maximum dry unit weight of the light weight soil ranges $1.46{\sim}1.61g/cm^3$ and the maximum dry unit weight decreases about 11~19.3% with the increase of amount of the recycled EPS beads and the optimum moisture content increase. Since the CBR values of the light weight soil ranges 10.4~18.4%, the light weight soil mixed with Phosphogypsum and recycled EPS beads can be used as a light weight backfill material on the soft soil.

  • PDF

Friction Characteristics of Geogrid -Light Weight Soil Mixed with Small Pieces of Waste EPS (지오그리드-폐 EPS조각 혼합경량토의 마찰특성)

  • 김홍택;방윤경
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.163-184
    • /
    • 1996
  • In this study, physical and geotechnical properties of the light weight mixed soil( weathered granite soil mixed with small pieces of waste EPS) were analyzed by laboratory experiments to examine its suitability for backfill materials of the reinforced-earth walls. Friction characteristics of geogrid-light weight sized soil were also investigated by performing the pullout tests for two types of geogrids having different flexural rigidity. Also a procedure was proposed to evaluate friction strength between geogrid and light weight miffed soil by using a stress-strain relationship of the orthotropic composite material subjected to both longitudinal and vertical loadings. By the procedure proposed in this study, values of the calibration coefficients ul and uf applicable for the evaluation of friction strengths between two types of geogrids and light weight mixed soils were further presented.

  • PDF

Engineering Characteristics of the Light Weight Soil Used Recycled Stylofoam Beads and Disposal Soils (폐스티로폴 입자와 현장 발생토를 활용한 경량혼합토의 공학적 특성)

  • Shin, Bang-Woong;Lee, Jong-Kyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.1 no.1
    • /
    • pp.43-50
    • /
    • 2000
  • This paper presents the engineering property of light weight soil made of soil mixed with recycled stylofoam and stabilizer. Recycled stylofoam beads is able to use by lightweight fill materials because it is light, adiabatic, and effective for vibration interception. Especially, recycled stylofoam beads is easy to supply because stylofoam have been recycle item in 1996. In this study, physical and geotechnical properties of the light weight mixed soil(weathered granite soil mixed with Stylofoam Beads) were analyzed by laboratory experiments to examine its suitability for backfill materials. Laboratory tests were performed to evaluated strength, bearing capacity, weight, permeability, microphotograph analysis with variation of mixing ratio. Based on the results, it is concluded that the use of recycled stylofoam beads is acceptable lightweight fill.

  • PDF

Development of Light-Weight Soil Mixed With E.P.S. Using Dredged Soil (준설토를 이용한 E.P.S. 경량혼합처리토의 활용성에 관한 연구)

  • 신현영;김병일;김용수;김수삼
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.410-417
    • /
    • 2000
  • The strength properties of Light-Weighted Soils(LWS) mixed with Expanded Polystrene(E.P.S.) using uniaxial and triaxial tests are studied. Test results show that when the initial water contents of dredged soils are under 135% and the cement contents are above 1%, Light-Weight Soils are in the appropriate strength range of 2.0 lo 4.0kg/$\textrm{cm}^2$. However. E.P.S. contents had a little effects on the strength properties of LWS.

  • PDF

Engineering Characteristics of the Light Weight Soil Using Phosphogypsum and EPS Beads (인산석고-EPS 조각을 활용한 경량혼합토의 공학적 특성)

  • Kim, Youngsang;Suh, Dongeun;Kim, Wonbong;Lee, Woobum
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.19-25
    • /
    • 2009
  • The current study developed light-weighted mixed soil that can solve problems related with soft soil such as ground subsidence, sliding and lateral displacement of ground. By reducing weight of reclaimed soil through mixing phosphogypsum and recycled EPS beads with the weathered granite soil. A series of geotechnical laboratory tests including physical index test, compaction test, CBR test, and direct shear test were performed and engineering properties were reviewed in order to assess applicability of the light-weighted mixed soil for roads and abutment and various back-filling materials at the reclamation area. Based on the laboratory test results, it was found that the maximum dry unit weight of the light-weighted soil ranges $14.32{\sim}15.79kN/m^3$ and the optimum water content ranges 21.91~24.23%, which means there is 11~19.3% weight decrease effect when comparing with general weathered granite soil. Also it was found that the corrected CBR value ranges 10.4~18.4% satisfying the domestic regulations on road subgrade and back-filling material. In addition, as for shear strength parameter, cohesion ranges 10.79~18.64 kPa and internal frictional angle ranges $35.4{\sim}37.2^{\circ}$, which are similar with those of general construction soil and back-filling material used in Korea. So it can be concluded that light-weighted mixed soil with phosphogypsum can be used effectively for soft reclamation ground as actual filling material and back-filling material. From the current study, it was found that light-weighted mixed soil with phosphogypsum has not only weight reduction effect, but also has no special problems in shear strength and bearing capacity. Therefore, it is expected that phosphogypsum can be recycled in bulk as road subgrade and back-filling material at the reclamation area.

  • PDF

Compaction and Leaching Characteristics of the Light Weight Soil Used Recycled Styrofoam Beads and Disposal soils (폐 Styrofoam 혼합토의 다짐 및 용출 특성)

  • Shin, Bang-Woong;Lee, Bong-Jik;Lee, Jong-Kyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.2
    • /
    • pp.61-70
    • /
    • 2002
  • This paper presents the engineering property of light weight soil made of soil mixed with recycled Styrofoam and stabilizer. Recycled Styrofoam is widely used for lightweight fill material because it has important geotechnical characteristics which are light, adiabatic, and effective for vibration interception. It is very easy to get the disposal styrofoam. For this study, dynamic compaction test, static compaction test and pH and leaching tests were performed. Based on the test results, it is concluded that the static compaction method is recommened to prevent from crushing materials and pH values of embankment materials are satisfied with these of domestic and RCRA configuration.

  • PDF

Strength Properties of Light-Weighted Soils Mixed with E.P.S (발포스티로폴을 이용한 경량혼합처리토의 강도특성)

  • 김수삼;윤길림;신현영;홍상기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.615-620
    • /
    • 2000
  • The strength properties of Light-Weighted Soils(LWS) mixed with Expanded Polystrene(E.P.S) are studied. Test results show that when the initial water contents of dredged soils are under 135% and the cement contents are above 1%, Light-Weight Soils are in the appropriate strength range of 2.0 to 4.0kg/㎠. However, E.P.S contents had a little affects on the strength properties of LWS. In the view of E.P.S diagram's effects on LWS, which have expand ratio of 25, 35, 45 and 60, further studies considering of physical properties of original E.P.S beads are needed.

  • PDF

Compaction Propertiesof Light Weight Soil Mixtures Using Crushed Expanded Polystyrene (파쇄된 발포폴리스티렌을 이용한 경량혼합토의 다짐특성)

  • Kang, Sung;Chang, Pyoung-Wuck
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.1
    • /
    • pp.79-85
    • /
    • 1999
  • Use of soils with crushed expanded polystyrene(EPS) satisfied both recycling of industrial waste and development of new light-weight fill materials. Objectives of the study were to make the mixed the mixed soils with the crushed EPS and to suggest the most rational mixing ration as a fill material. A series of laboratory tests was performed to investigate the relationship between miximum dry density and optimum moisture contenr and to find the variation of CBR for mixtures with 3 soils and 2 sizes of the crushed EPS. Results of the test showed that the sizes fo the curshed EPS had a little effect on the properties of mixed soils. But gradatiion of soils and mixing ration with the crushed EPS were important factors to characterize compaction properties of the mixed soils.

  • PDF

Effects of Different Soil on the Growth of Salicornia herbacea (토양조건이 퉁퉁마디의 생육에 미치는 영향)

  • Baik, Jung-Ae;Chiang, Mae-Hee
    • Journal of Bio-Environment Control
    • /
    • v.20 no.3
    • /
    • pp.216-220
    • /
    • 2011
  • This experiment was conducted to select the right artificil soil for the purpose of artificial cultivation by effect of NaCl and different artificial soil treatment on plant growth in Salicornia herbacea that live in coastal areas. The experimental plants were planted in light and easy-to-use artificial porous soil, vermiculite, perlite, and mixed soil and were cultured for 4 month treated by hyponex solution fertilizer and 200 mM NaCl. The height, fresh weight, and dry weight of plant growth was good in a mixed soil of porous soil and pearlite. NaCl treatment on growth and chlorophyll contents, regardless of soil type decreased. Proline content of control was showed higher than salt treatment in planted by poros soil and perlite and antioxidant activity was similar value in all treatment. The antioxidant of Salicornia in different soil and salt treatment was not affected.

Effects of Light-Weight Soil Mixture and Depth on the Three Native Plants in Extensive Roof Garden (옥상조경용 경량 토양의 혼합비와 토심이 3가지 자생초화류의 생육에 미치는 영향)

  • 김명회;방광자;주진희;한승원
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.1
    • /
    • pp.101-107
    • /
    • 2003
  • Focusing on native plants that have a high possibility of being introduced as extensive rooftop material, this study was conducted to realize extensive and easy-to-manage rooftop gardens and to raise the utilization of native plants by verifying their growing response to soil media and depth. Its result is as follows: 1) In the case of Chrysanthemum zawadskii, the top growth was better in sandy loam than in P$_1$V$_1$P$_2$, and P$_1$V$_1$P$_3$, but the mortality rate was high, making it unsuitable soil. Regarding soil depth the mortality rate was lower in 10cm than in 5cm, and it grew well in 10cm. When using it for rooftop gardens, it would be desirable to keep the minimum viable soil depth over loom. 2) In the case of Sedium middendorffianum the mortality rate was 0% regardless of soil media and depth making it very suitable material for rooftop garden. Although the flowering rate was somewhat lower in P$_1$V$_1$P$_2$, and P$_1$V$_1$P$_3$ than in sandy loam, the mortality rate was low and the root growth was good. Therefore, provided that fertilizing is managed well, it is a plant that can be highly utilized. 3) In the case of Allium senescens, the mortality rate was 0% regardless of soil or soil depth, making it a very suitable plant for extensive rooftop gardens. Although top growth was poorer in P$_1$V$_1$P$_2$, and P$_1$V$_1$P$_3$than in sandy loam the root growth was good. Therefore, provided that fertilizing is managed well, it is a plant that can be highly utilized. In conclusion the study revealed that suitable species for extensive rooftop gardens are Sedium middendorffianum and Allium senescens. However, Chrysanthemum zawadskii can be utilized greatly when fertilizing is managed regularly in artificial mixed soil over l0cm.