• Title/Summary/Keyword: Light scattering technique

Search Result 109, Processing Time 0.047 seconds

Study on the Nonlinear Interaction of Laser with Plasma -Detection of Second Harmonic Light and Brillouin Scattering Light by Means of Spectroscopic Technique- (레이저와 프라즈마와의 비선형상오작용에 관한 연구 -분광법에 의한 제 2고주파와 Brillouin 산람광의 검출-)

  • Kang, Hyung-Boo
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.5
    • /
    • pp.173-180
    • /
    • 1984
  • The spectra of scattering light fromlaser-produced plasma near its fundamental and second harmonic wavelength were observed respectively by means of spectroscopic technique. The experimental results and the generation mechanism of nonlinear effects such as the second garmonics and the brillouin scattering were analysed theoretically. The spectra of reflected laser light became wider than that of incident laser light. And the peak of spectrum of reflected light shifted to red-side from that of incident light. The second harmonic light is generated from the nonlinear interaction of the incident laser light and the electron plasma wave excited in resonance region by the oblique incidence of laser light to the plasma. The Brillouin backscattering from laser-produced plasmas of hydrogen and deuterium has shown an isotope effect in the red-side region of the generated second harmonic light. This isotope shift is explained by the parametric instability at the cutoff (resonance) region using frequency-and phase-matching conditions of the waves.

  • PDF

A New Method for Antimicrobial Susceptibility Testing of Vitro-cultured Bacteria by Means of Resonance Light Scattering Technique

  • Shi, Yu-Jun;Chen, Jun;Xu, Ming
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.118-123
    • /
    • 2008
  • A new method for antimicrobial susceptibility testing of vitro-cultured bacteria on an ordinary fluorescence spectrometer was developed. The viable bacteria reduced 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) to produce insoluble particles that displayed intense resonance scattering light. The assay showed a linear relationship between the number of viable bacteria and the intensity of resonance scattering light. Dead bacteria were unable to reduce MTT. Methicillin-resistant Staphylococcus aureus exposed to flavonoids from Marchantia convoluta showed a flavonoids concentration-dependent inhibition of the ability to reduce MTT. In the assay, less than 12 h was required to attain susceptibility results and fewer bacteria were utilized than in traditional methods. The RLS technique could, in combination with the MTT assay, be a rapid and sensitive measuring method to determine the in vitro activity of new antimicrobials.

Comparison of Scattered Light of ex vivo Mouse Neutrophils by Different Wavelength Laser Irradiation (2개의 레이저 파장에 따른 마우스 호중구의 산란광 비교 연구)

  • Park, Jae-Sung;Son, Min-Ji;Hwang, Chang-Soon;Lee, Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.365-378
    • /
    • 2022
  • Complete blood cell count(CBC) is a technique that counts leukocytes for each type of blood cell being analyzed. The principle is that laser is incident to ex vivo flowing leukocytes in a microcapillary tube and scattered light occurs by laser and leukocytes. By collecting the scattered light, we can count the types of cells because different cells generate different light-scattering patterns. However, the technique has an intrinsic limitation, scattering pattern is shown in a wide range region in the resulting, which makes it difficult to accurate analyze and use fluorescent dyes. To overcome this limitation, a new design of CBC with a dual laser, which irradiates with orthogonal angles for collecting quad-scattering information was proposed. Before development, the scattering difference depending on wavelength must be investigated to only catch up to the scattered signal by angles. Some studies, which focused on simple particles, have been conducted to theoretically and experimentally investigate different scatterings by wavelength. In this study, we propose an optical system for measuring scattered light and investigate a complex particle. As a result, the green laser made strong scattering signals in both the forward and side direction: 10% and 30%, respectively.

Visualization of Gasoline Sprays Via a Simultaneous Inaging of Fluorescence and Scattering Lights (형광, 산란광 동시 촬열법을 이용한 가솔린 분무의 거동에 관한 연구)

  • 원영호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.167-174
    • /
    • 1997
  • The penetration depth and the size distribution of the droplets of fuel sprays are important in the operation of spark-ignition MPI engines. A fluorescence/scattering image technique for droplet sizing was applied to measure th edroplet size distribution in non-evaporating gasoline sprays. The fluorescence and scattering lights were imaged simultaneously by the two-dimensional visualization system composed of a laser sheet, a doubling prism, optical filters, and a CCD camera. Quantitative droplet size distributions were extracted from evaluating the ratio of the two light densities. The mean droplet size measured by the fluorescence/scattering technique was compared with the result obtained by the enlarged photographs of droplets. The fluorescence/scattering image technique also gives the useful information of the characteristics of droplet impingement in a inclined wall.

  • PDF

The Spray Characterization Using Planar Imaging Technique (평면 이미지 기법을 이용한 분무 특성 해석)

  • Lee, Kyung-Jin;Jung, Ki-Hoon;Yoon, Young-Bin;Jeong, Kyung-Seok;Jeung, In-Seuck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.93-101
    • /
    • 2000
  • The characteristics of spray nozzle have been quantified with the measurement of fluorescence and Mie scattering images. To correct the attenuation of the incident light sheet, a sequential double-pass light sheet system and the geometrical averaging of two images was implemented. Quantitative mass flux distribution of spray was obtained from fluorescence image. 3-D image is reconstructed using 2-D radial images. Sauter mean diameter (SMD) distribution was determined using the ratio of fluorescence signal intensity and Mie scattering signal intensity and the values were quantified with PDP A data. The measurement of mass flux and SMD using planar imaging technique agee with PDP A data fairly well in the low density region. However, in dense region, there are significant errors caused by secondary scattering. It was found that the planar imaging technique provides many advantages over the point measurement technique, such as PDP A, and can be implemented for quantitative measurement, especially in low density region.

An Experimental Study of Silica Particle Growth in a Coflow Diffusion Flame Utilizing Light Scattering and Local Sampling Technique (I) - Effects of Flame Temperature - (광산란과 입자포집을 이용한 동축류 확산화염 내의 실리카 입자의 성장 측정(I) - 화염온도의 영향 -)

  • Cho, Jaegeol;Lee, Jeonghoon;Kim, Hyun Woo;Choi, Mansoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1139-1150
    • /
    • 1999
  • The evolution of silica aggregate particles in coflow diffusion flames has been studied experimentally using light scattering and thermophoretic sampling techniques. The measurements of scattering cross section from $90^{\circ}$ light scattering have been utilized to calculate the aggregate number density and volume fraction using with combination of measuring the particle size and morphology through the localized sampling and a TEM image analysis. Aggregate or particle number densities and volume fractions were calculated using Rayleigh-Debye-Gans and Mie theory for fractal aggregates and spherical particles, respectively. Of particular interests are the effects of flame temperature on the evolution of silica aggregate particles. As the flow rate of $H_2$ increases, the primary particle diameters of silica aggregates have been first decreased, but, further increase of $H_2$ flow rate causes the diameter of primary particles to increase and for sufficiently larger flow rates, the fractal aggregates finally become spherical particles. The variation of primary particle size along the upward jet centerline and the effect of burner configuration have also been studied.

Real-Time Simulation of Single and Multiple Scattering of Light (빛의 단일 산란과 다중 산란의 실시간 시뮬레이션 기법)

  • Ki, Hyun-Woo;Lyu, Ji-Hye;Oh, Kyoung-Su
    • Journal of Korea Game Society
    • /
    • v.7 no.2
    • /
    • pp.21-32
    • /
    • 2007
  • It is significant to simulate scattering of light within media for realistic image synthesis; however, this requires costly computation. This paper introduces a practical image-space approximation technique for interactive subsurface scattering. We use a general two-pass approach, which creates transmitted irradiance samples onto shadow maps and computes illumination using the shadow maps. We estimate single scattering efficiently using a method similar to common shadow mapping with adaptive deterministic sampling. A hierarchical technique is applied to evaluate multiple scattering, based on a diffusion theory. We further accelerate rendering speed by tabulating complex functions and utilizing level of detail. We demonstrate that our technique produces high-quality images of animated scenes with blurred shadow at hundreds frames per second on graphics hardware. It can be integrated into existing interactive systems easily.

  • PDF

Aggregation of Nanoparticles Using a Unipolar Charging Technique (단극하전을 이용한 나노입자 응집성장 제어)

  • Park, Hyung-Ho;Kim, Sang-Soo;Chang, Hyunk-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.46-53
    • /
    • 2003
  • Effects of electric force on the morphology and growth of aggregates were studied experimentally. Nano-sized NaCl particles were supplied to a flame to perform the unipolar charging state. This electric precursor did not modify a temperature profile of the flame. The morphology of aggregates was measured by TEM image processing technique and the light scattering technique. In the unipolar charged state, the fractal dimension of aggregates was smaller than that of' the electrically neutral state. This result was in good agreement with our previous numerical simulations.

Density Estimation Technique for Effective Representation of Light In-scattering (빛의 내부산란의 효과적인 표현을 위한 밀도 추정기법)

  • Min, Seung-Ki;Ihm, In-Sung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.1
    • /
    • pp.9-20
    • /
    • 2010
  • In order to visualize participating media in 3D space, they usually calculate the incoming radiance by subdividing the ray path into small subintervals, and accumulating their respective light energy due to direct illumination, scattering, absorption, and emission. Among these light phenomena, scattering behaves in very complicated manner in 3D space, often requiring a great deal of simulation efforts. To effectively simulate the light scattering effect, several approximation techniques have been proposed. Volume photon mapping takes a simple approach where the light scattering phenomenon is represented in volume photon map through a stochastic simulation, and the stored information is explored in the rendering stage. While effective, this method has a problem that the number of necessary photons increases very fast when a higher variance reduction is needed. In an attempt to resolve such problem, we propose a different approach for rendering particle-based volume data where kernel smoothing, one of several density estimation methods, is explored to represent and reconstruct the light in-scattering effect. The effectiveness of the presented technique is demonstrated with several examples of volume data.

Velocity measurements in complex flows of non-Newtonian fluids

  • Muller, Susan J.
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.3
    • /
    • pp.93-105
    • /
    • 2002
  • Experimental methods for making quantitative measurements of velocity fields in non-Newtonian fluids are reviewed. Techniques based on light scattering spectroscopy - laser Doppler velocimetry and homodyne light scattering spectroscopy, techniques based on imaging the displacement of markers - including particle image velocimetry and molecular tagging velocimetry, and techniques based on nuclear magnetic resonance imaging are discussed. The special advantages and disadvantages of each method are summarized, and their applications to non-Newtonian flows are briefly reviewed. Example data from each technique are also included.