• Title/Summary/Keyword: Light pipe

Search Result 172, Processing Time 0.025 seconds

A Study on the Typhoon Disaster of Greenhouse (시설원예용 플라스틱 하우스의 태풍피해에 관한 연구)

  • 윤용철;서원명;윤충섭
    • Journal of Bio-Environment Control
    • /
    • v.4 no.2
    • /
    • pp.167-174
    • /
    • 1995
  • This study was carried out to find a way of improving the windproof capability of greenhouse foundations. Generally, greenhouses are often collapsed due to the strong winds, because they are very light weight structures. In such a critical situations, the foundations are very often subjected to uplift and vibration at the same time. This paper describes both the wind disaster of greenhouses by the typhoon FAEY and the uplift resistance of greenhouse foundations. Followings are the results obtained from this study ; Judging from the view point of year round cultural aspects, it is recommended that some measures be taken for the preventions of greenhouse film ruptures because greenhouse structural damages are found to be directly associated with the local rupture of cover film. In the case of surveyed area, movable pipe-houses or pipe-houses of 1-2W type were found to be completely destroyed when the maximum instantaneous wind velocity was over 30m/sec or so. In the case of movable pipe-houses, the uplift resistance of greenhouse was expected to increase with the increase of pipe diameter and/or the embedment pipe length. But at present situations there is a limitation in raising the uplift resistance of movable pipe-house, because pipe diameters as well as pipe lengths customarily selected by farmers are quite a much limited.

  • PDF

Characteristics of Coupled Acoustic Wave Propagation in Metal Pipe (금속 배관의 연성된 음향 전파 특성)

  • Kim, Ho-Wuk;Kim, Min-Soo;Lee, Sang-Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.267-273
    • /
    • 2008
  • The circular cylinder pipes are used in the many industrial areas. In this paper, the acoustic wave propagation in the pipe containing a gas is researched. First of all, the theory for the coupled acoustic wave propagation in a pipe is investigated. Acoustic wave propagation in pipe can not be occurred independently between the wave of the fluid and the shell. It requires complicated analysis. However, as a special case, the coupled wave in a high density pipe containing a light density medium is corresponded closely to the uncoupled in-vacuo shell waves and to the rigid-walled duct fluid waves. The coincidence frequencies of acoustic and shell modes contribute to the predominant energy transmission. The coincidence frequency means the frequency corresponding to the coincidence of the wavenumber in both acoustic and shell. In this paper, it is assumed that the internal medium is much lighter than the pipe shell. After the uncoupled acoustic wave in the internal medium and uncoupled shell wave are considered, the coincidence frequencies are found. The analysis is successfully confirmed by the verification of the experiment using the real long steel pipe. This work verifies that the coupled wave characteristic of the shell and the fluid is occurred as predominant energy transmission at the coincidence frequencies.

A Study on the Performance Evaluation of Fitting for Light-gauge Stainless Steel Pipe (경량 스테인리스 강관용 이음쇠의 성능평가에 관한 연구)

  • Nam, Jun-Seok;Park, Joo-Hwan;Min, Kyung-Tak;Kim, Yeob-Rae;Song, Chul-Gang
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.89-97
    • /
    • 2010
  • In recent fire protection system, the pipings should be light weighted, seismic proof and wrought with non-welding method. The light weighted stainless steel pipes and fittings, satisfying these requirements, are already used as a fire protection system in Germany, Netherland, Taiwan, Australia, United States and Japan. Accordingly, performance evaluation tests were carried out to determine whether or not the fittings can be used in the pipings. As the performance evaluation tests, we conducted vibration test, water hammering test, bending test and fire test. With the results of the tests, we concluded that the fittings can be used in the fire protection system, and that the life expectancy of the fittings exceeds that of buildings.

Development of an In-Pipe Inspection and Cleaning Robot (배관 검사 및 청소 로봇의 개발)

  • Choi, Hyeung-Sik;Na, Won-Hyun;Kang, Dong-Wan;Kang, Hyung-Suk;Jeon, Ji-Gwang;Kim, Hyun-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.662-671
    • /
    • 2009
  • In this paper, a robot was developed for in-pipe cleaning and inspecting a large number of circular in-pipes of sea plants, ships, and buildings. A pressure generation mechanism was devised to inspect circular in-pipes with different diameters and to move up and down slant or perpendicular slopes in-pipes. For inspection of the dark inner side of the pipe, a light system using LED which dissipats small electricity was developed. Also, a design method was analyzed to decide the capacity of driving motor for the robot when the mass and maximum velocity of the robot are identified. The robot developed based on the design specification, was tested to verify the performance of the pressure generation mechanism. In addition, a control system was developed for the test.

Cooling Performance Evaluation of Loop Type Heat Pipe (루프형 히트파이프 냉각성능에 관한 연구)

  • Kim, B.H.;Kim, K.H.
    • Journal of ILASS-Korea
    • /
    • v.7 no.2
    • /
    • pp.31-36
    • /
    • 2002
  • According to the improvement of PC performance, it is expected that calorific value, which causes PC to malfunction, is increased. Therefore, the development of new cooling system is recently required. As the method to solve this problem, we applied loop heat pipe to PC cooling system. The advantage of the loop heat pipe is that it has a small size, light weight, simple shape, long life and it has a good performance on heat transfer, no-noise, wide range of applicable temperature and no supply of power from the outside. It is confirmed that loop heat pipe reduces thermal resistance and has a good performance on PC cooling.

  • PDF

Investigation of Research & Development Trends for Sunlight System (태양광 채광 시스템의 기술개발동향에 관한 조사분석연구)

  • Kim, Sun-Ho;Yoon, Kwang-Sik;Kim, Byung-Cheol
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.260-263
    • /
    • 2007
  • The importance of natural light in building is known by all of us who experienced dark rooms. The sunlight system is very important from energy saving and human welfare point of view. The system consists of light-collecting module, light -transporting module and light-emitting module. The light-collection is used light reflection mirror, a prism for lighting bent, and lens for light condensing. The transportation of collected sunlight is used polished duct, tube, pipe and specially used fiber optic cable. This paper investigate research and development trends of sunlight system for advanced product.

  • PDF

High-Power LED Thermal Spreaders Design Using Pulsating Heat Pipe (진동형 히트파이프를 이용한 고출력 LED 조명 방열 설계)

  • Jang, Jeong-Wan;Kim, Jong-Soo;Ha, Soo-Jung
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1379-1384
    • /
    • 2009
  • High power light emitting diode(LEDs), a strong candidate for the next generation general illumination applications are of interest. With major advantages of power saving, increased life expectancy and faster response time over traditional incandescent bulb, the LEDs are rapidly taking over many applications such as LCD backlighting, traffic light, automotive lighting, signage, etc. The increased electrical currents used to drive the LEDs have focused more attention on the thermal management because the efficiency and reliability of the solid-state lighting devices strongly depend on successful thermal management. There exist some problems that are caused by heat generation in the LED package, such as wire breakage, yellowing of epoxy resin, lifted chip caused by reflow of thermal paste chip attach and interfacial separation between LED package and silicon resin. The goal of this study is to analyze high power LED thermal properties of using pulsating heat pipe.

  • PDF

Solution for the Improvement in Structural Design & Application of PEB System for the Standard Livestock Housing(2008) (표준축사 모델에서 PEB시스템의 적용 및 구조설계 개선방안)

  • Park, Man-Woo;Do, Byung-Ho;Song, Jun-Ik
    • Journal of Animal Environmental Science
    • /
    • v.15 no.1
    • /
    • pp.17-28
    • /
    • 2009
  • PEB system is more economical when compared with structures commonly used Hot rolled and welded light H-beam was introduced in the Standard Livestock Housing. This study suggested more economical technology for structural design by the reduction of live load, relief of deflection limit and reduction of importance factor. And, when applying wind Load as a result of examination with Low Rise Building Systems Manual considering open model, we can know that when the wind load is big, enclosed model is more stable than open model. In short, Suggesting more economical model and providing the method to reduce natural disaster, by the application of PEB system and the development of technology for structural design, are considered to strengthen the competitive power of farmhouse.

  • PDF

Defect Detection of Wall Thinned Straight Pipe using Shearography and Lock-in Infrared Thermography (전단간섭계와 적외선열화상을 이용한 감육 직관의 결함검출)

  • Kim, Kyeong-Suk;Jung, Hyun-Chul;Chang, Ho-Seob;Kim, Ha-Sig;La, Sung-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.55-61
    • /
    • 2009
  • The wall thinning defect of nuclear power pipe is mainly occurred by the affect of the flow accelerated corrosion (FAC) of fluid. This type of defect becomes the cause of damage or destruction of in carbon steel pipes. Therefore, it is very important to measure defect which is existed not only on the welding part but also on the whole field of pipe. This study use dual-beam Shearography, which can measure the out-of-plane deformation and the in-plane deformation by using another illuminated laser beam and simple image processing technique. And this study proposes Infrared thermography, which is a two-dimensional non-contact nondestructive evaluation that can detect internal defects from the thermal distribution by the inspection of infrared light radiated from the object surface. In this paper, defect of nuclear power pipe were, measured using dual-beam shearography and infrared thermography, quantitatively evaluated by the analysis of phase map and thermal image pattern.

Deflection and buckling of buried flexible pipe-soil system in a spatially variable soil profile

  • Srivastava, Amit;Sivakumar Babu, G.L.
    • Geomechanics and Engineering
    • /
    • v.3 no.3
    • /
    • pp.169-188
    • /
    • 2011
  • Response of buried flexible pipe-soil system is studied, through numerical analysis, with respect to deflection and buckling in a spatially varying soil media. In numerical modeling procedure, soil parameters are modeled as two-dimensional non-Gaussian homogeneous random field using Cholesky decomposition technique. Numerical analysis is performed using random field theory combined with finite difference numerical code FLAC 5.0 (2D). Monte Carlo simulations are performed to obtain the statistics, i.e., mean and variance of deflection and circumferential (buckling) stresses of buried flexible pipe-soil system in a spatially varying soil media. Results are compared and discussed in the light of available analytical solutions as well as conventional numerical procedures in which soil parameters are considered as uniformly constant. The statistical information obtained from Monte Carlo simulations is further utilized for the reliability analysis of buried flexible pipe-soil system with respect to deflection and buckling. The results of the reliability analysis clearly demonstrate the influence of extent of variation and spatial correlation structure of soil parameters on the performance assessment of buried flexible pipe-soil systems, which is not well captured in conventional procedures.