• Title/Summary/Keyword: Light loads

Search Result 245, Processing Time 0.027 seconds

A New Approach to Improve Induction Motor Performance in Light-Load Conditions

  • Hesari, Sadegh;Hoseini, Aghil
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1195-1202
    • /
    • 2017
  • Induction motors often reach their maximum efficiency at the nominal load. In most applications, the machine load is not equal to the nominal load, thus reduces the motor efficiency and turns a greater percent of power into loss. In this paper, the induction motor control problem has been investigated to reduce the system losses. The Field Oriented Control method (FOC) has been employed in this paper. In this research, the mathematical equations related to system losses are calculated in relation to torque and speed, and then the q- and d-axis are summarized according to the current components. After that, the proposed method is applied along with d- and q-axis. In the recent three decades, many techniques have been suggested to improve the induction motor performance using smart and non-smart methods. In this paper, a new PSO-Fuzzy method have used in real time. The fuzzy logic method serves as speed controller in q-axis and PSO algorithm controls the optimum flux in d-axis. It will be proved that the use of this combined method will lead to a significant improvement in motor efficiency.

Thermoelastic static and vibrational behaviors of nanocomposite thick cylinders reinforced with graphene

  • Moradi-Dastjerdi, Rasool;Behdinan, Kamran
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.529-539
    • /
    • 2019
  • Current paper deals with thermoelastic static and free vibrational behaviors of axisymmetric thick cylinders reinforced with functionally graded (FG) randomly oriented graphene subjected to internal pressure and thermal gradient loads. The heat transfer and mechanical analyses of randomly oriented graphene-reinforced nanocomposite (GRNC) cylinders are facilitated by developing a weak form mesh-free method based on moving least squares (MLS) shape functions. Furthermore, in order to estimate the material properties of GRNC with temperature dependent components, a modified Halpin-Tsai model incorporated with two efficiency parameters is utilized. It is assumed that the distributions of graphene nano-sheets are uniform and FG along the radial direction of nanocomposite cylinders. By comparing with the exact result, the accuracy of the developed method is verified. Also, the convergence of the method is successfully confirmed. Then we investigated the effects of graphene distribution and volume fraction as well as thermo-mechanical boundary conditions on the temperature distribution, static response and natural frequency of the considered FG-GRNC thick cylinders. The results disclosed that graphene distribution has significant effects on the temperature and hoop stress distributions of FG-GRNC cylinders. However, the volume fraction of graphene has stronger effect on the natural frequencies of the considered thick cylinders than its distribution.

The structural behavior of lightweight concrete buildings under seismic effects

  • Yasser A.S Gamal;Mostafa Abd Elrazek
    • Coupled systems mechanics
    • /
    • v.12 no.4
    • /
    • pp.315-335
    • /
    • 2023
  • The building sector has seen a huge increase in the use of lightweight concrete recently, which might result in saving in both cost and time. As a result, the study has been done on various types of concrete, including lightweight (LC), heavyweight (HC), and ordinary concrete (OC), to understand how they react to earthquake loads. The comparisons between their responses have also been taken into account in order to acquire the optimal reaction for various materials in building work. The findings demonstrate that LWC building models are more earthquake-resistant than the other varieties due to the reduction in building weight which can be a curial factor in the resistance of earthquake forces. Another crucial factor that was taken into study is the combination of various types of concrete [HC, LC, and OC] in the structural components. On the other hand, the bending moments and shear forces of LC had reduced to 17% and 19%, respectively, when compared to OC. Otherwise, the bending moment and shear force demand responses in the HC model reach their maximum values by more than 34% compared to the reference model OC. In addition, the results show that the LCC-OCR (light concrete column and ordinary concrete roof) and OCC-LCR (ordinary concrete for the column and light concrete for the roof) models' responses have fewer values than the other types.

A Comparison Study of Wing Leading Edge Skin Models in Small Composite Solar-Powered UAVs (소형 복합재 태양광 무인기 윙 리딩에지스킨 모델 비교 연구)

  • Yang, Yong-Man;Kim, Yong-Ha;Kim, Jong-Hwan;Kim, Young-In;Lee, Soo-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.445-452
    • /
    • 2017
  • The wing leading edge skin in this research is an essential structural factor for improving wings' aeromechanical functions, protecting the interior elements of the wings from external damage including birds, and navigating planes safely. The study compared and reviewed models manufactured for optimal light-weight wings of composite UAVs. It compared and investigated displacement forms of torsion loads through finite element analysis using MSC. Patran/Nastran. By confirming the improvement of light-weighting performance according to lamination type, thickness change and shape through torsion strength tests of each model, the research suggested the optimal light-weight wing leading edge skin for small composite UAVs.

Racking Property of Light-framed Shear Wall with Hold-down Connector (홀드다운을 적용한 경골목조 벽체의 전단성능)

  • Lee, In-Chan;Park, Chun-Young;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.26-36
    • /
    • 2008
  • As the height of the light-framed building increases, the lateral load and overturn-moment are increased and the possibility of the building overturn becomes larger. Because the shear wall resists lateral load in light-framed building, the reinforcement of shear wall is required. In order to reinforce the light-framed shear wall, using lag screw fastener type (B-HD) and using bolt type (S-HD) hold-down connectors were applied for test. And domestic larch lumbers, $38{\times}140mm$ and $89{\times}140mm$, KS 2nd grade, were used for the stud. The North American OSB panels were used for sheathing panel. Static loads, load speed 6 mm/min, were applied on top of the wall. As a result, shear strength of the wall that using hold-down connector was improved sufficiently. And when applying the S-HD type hold-down connector, stud should be reinforced against weakening by drilled hole. As increasing the number of lag screw, the number of bolt and the product allowable strength, the strength of shear wall that using hold-down connector was also increased. When applying hold-down connector to light-framed building using 38 mm stud, it must be reinforced by enlarging the thickness of stud like as 38 mm doubled column.

Finite Element Analysis on the Effect of the Surface Roughness on the Tensile Properties of Pure Titanium (순 타이타늄 인장 물성에 미치는 표면 거칠기의 영향에 대한 유한요소해석)

  • Baek, S.M.;Moon, J.H.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.26 no.2
    • /
    • pp.108-114
    • /
    • 2017
  • Titanium based implants are known to improve their osseointegration by controlling surface roughness from nanometers to micrometers. Implants continuously and/or repeatedly receive irregular loads in the human body, and require a deeper understanding of the tensile and fatigue properties that can determine the fracture characteristics of the materials. In this study, the plastic deformation behavior which depends on the surface geometry of the materials during tensile tests was analyzed using the finite element method. As a result, the tensile properties were greatly decreased with increasing the sharpness of the surface. On the other hand, the average roughness had no significant effect on tensile properties. This investigation shed a light on developing titanium implants with improved osseointegration by surface treatments.

A Study on the Power Factor Improvement of Single-Phase Bridgeless Voltage Doubler Converter (단상 브리지리스 배전압 변환기의 역률 개선에 관한 연구)

  • Koo, Do-Yeon;Kim, Dong-Wook;Lim, Seung-Beom;Hong, Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.169-170
    • /
    • 2011
  • PFC(Power Factor Correction) converters are commonly designed for CCM(Continuous Conduction Mode). However, DCM(Discontinuous Conduction Mode) appears in the input current near the ZCP(Zero Crossing Point) at light loads, resulting in input current distortion. It is caused by inaccurate average current values obtained in DCM. This paper studies a simple digital control scheme that can be operated in both CCM and DCM with minimal changes to the CCM average current control structure.

  • PDF

Preliminary Diagnosis for Pulsing Simulation of Low Trophic Ecosystem by Environmental Changes in Coastal Area (연안해역의 환경변화에 따른 저차 생태계 Pulsing Simulation 예비 진단)

  • Lee, Dae-In
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.3
    • /
    • pp.461-468
    • /
    • 2012
  • In general, long-term changes of ecological factors take a pulse form in which they interact with other factors and go through a repeated increasing and decreasing cycle. The coupling of the two approaches the grid model and the box model in ecological modeling can lead to an in-depth understanding of the environment. The study analyzes temporal variations of major storages with an energy system model that formulizes effectively the relationships among nutrients, phytoplankton, and zooplankton in the Yellow Sea and the East China Sea. An increase of light intensity and standing stock of nutrient increase the magnitude and frequency of pulsing. Also, an immense reduction of nutrient concentration can cause extinction of the pulsing and bring about a steady state. It is concluded that the nutrient loads in freshwater discharge from the Yangtze affect the cycles of major ecological components as well as water quality variables and play an important role in the marine ecosystem.

An Experimental Study on Combustion and Exhaust Emissions Characteristics in RCCI (Reactivity Controlled Compression Ignition) of Dual-Fuel (Diesel+Gasoline) (2중연료(디젤+가솔린)의 RCCI 연소 및 배기 특성에 관한 실험적 연구)

  • Sung, K.A.
    • Journal of ILASS-Korea
    • /
    • v.16 no.1
    • /
    • pp.51-57
    • /
    • 2011
  • An experimental study was performed to explore characteristics of combustion and exhaust emissions in the compression ignition engine of RCCI (reactivity controlled compression ignition) using diesel-gasoline dual fuel. A dual-fuel reactivity controlled compression ignition concepts is demonstrated as a promising method to achieve high thermal efficiency and low emissions. For investigating combustion characteristics, engine experiments were performed in a light-duty diesel engine over a range of SOIs (start of injection) and gasoline percents. The experimental results showed that cases of diesel-gasoline dual fuel combustion is capable of operating over a middle range of engine loads with lower levels of NOx and soot, acceptable pressure rise rate, low ISFC (indicated specific fuel consumption), and high indicated thermal efficiency.

디지탈 영상처리를 이용한 광탄성 프린지의 세선화처리

  • 백태현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.127-133
    • /
    • 2001
  • Photoelastic isochromatic fringes related to the difference of principal stresses have some bandwidth whose light intensities are not constant and unsymmetrical in experimental image. Hence it is difficult to measure fringe order accurately at a data point by visual observation. In this study, the method of fringe sharpening, which can extract sharpened lines from both full-and half-order fringes by digital image processing, is developed. To test the method, various simple photoelastic fringe patterns are simulated and their image are processed to yield sharpened lines. The method is than applied to general problem such as image of a circular disk compressed by concentrated loads and a cylinder subjected to internal pressure. The procedure is proved to be capable of extracting sharpened lines accurately from photoelastic isochromatic fringes.