• Title/Summary/Keyword: Light intensity deviation

Search Result 18, Processing Time 0.029 seconds

A Study on Roughness Measurement of Polished Surfaces Using Reflected Laser Beam Image (레이저빔 반사 화상을 이용한 연마면 거칠기 측정법에 관한 연구)

  • Shen, Yun-Feng;Lim, Han-Seok;Kim, Hwa-Young;Ahn , Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.145-152
    • /
    • 1999
  • This paper presents the principle and experimental results of a non-contact surface roughness measurement by means of screen projected pattern of lase beam reflected from a polished surface. In the reflected laser beam pattern especially from a fine surface like ground or polished one, light intensity varies from the center fo the image to its boundary as the Gaussian distribution. The standard deviation of a light intensity distribution is assumed to be a good non-contact estimator for measuring the surface roughnes, because the light reflectivity is known to be well related with the surface roughness. This method doesn't need to discriminate between the specularly reflected light and the diffusely reflected one, whereas the scattered laser intensity method must do. Nor it needs to adjust the change of light intensity caused by environmental lights or specimen materials. Reflected laser beam pattern narrowly spreads out in the vertical direction to tiny scratches on the polished surface due to abrasives. The deeper the scratch the more the dispersion, which means the rougher surface. The standard deviation of the pattern is nearly in proportion to the surface roughness. Measurement errors by this method are shown to be below 10 percent compared with those obtained by a common contact method. The inclination of measuring unit from the normal axis causes the measurement errors up to 10 percent for an angle of 4 degree. Therefore the proposed method can be used as an on-the-machine quick roughness estimator within 10 percent measurement error.

  • PDF

A Study on the Control Characteristics of Line Scan Light Source for Machine Vision Line Scan Camera (머신 비전 라인 스캔 카메라를 위한 라인 스캔 광원의 제어 특성에 관한 연구)

  • Kim, Tae-Hwa;Lee, Cheon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.371-381
    • /
    • 2021
  • A machine vision inspection system consists of a camera, optics, illumination, and image acquisition system. Especially a scanning system has to be made to measure a large inspection area. Therefore, a machine vision line scan camera needs a line scan light source. A line scan light source should have a high light intensity and a uniform intensity distribution. In this paper, an offset calibration and slope calibration methods are introduced to obtain a uniform light intensity profile. Offset calibration method is to remove the deviation of light intensity among channels through adding intensity difference. Slope calibration is to remove variation of light intensity slope according to the control step among channels through multiplying slope difference. We can obtain an improved light intensity profile through applying offset and slope calibration simultaneously. The proposed method can help to obtain clearer image with a high precision in a machine vision inspection system.

Effects of Environmental Factors on the Cambial Electrical Resistance of Woody Plants (목본식물 형성층 전기저항에 영향을 주는 환경 요인)

  • Kim, Dong-Uk;Kim, Min-Soo;Lee, Bu-Yong
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.35 no.3
    • /
    • pp.105-113
    • /
    • 2007
  • This study was conducted to analyze the effects of environmental factors such as soil moisture, light intensity, temperature and humidity on changes in cambial electrical resistance. To improve data quality, cambial electrical resistance was continuously measured at fixed points by using a data logger isolated from alternating current. The relationship between environmental factors and changes in cambial electrical resistance was also analyzed. The results are as follows: 1. Cambial electrical resistance is highly correlated to the temperature of the measured area(r=-0.934). Therefore, temperature compensation is needed to analyze the effects of other environmental factors on cambial electrical resistance changes. 2. If temperature is compensated for, the change of cambial electrical resistance is highly correlated to water vapor pressure(r=-0.836). 3. If temperature and humidity are compensated for, the change of cambial electrical resistance is highly correlated to intensity of light(r=-0.738). 4. Diurnal deviation of soil water potential is not more significantly related than the change of cambial electrical resistance. However, in the long-term, soil water potential and cambial electrical resistance are highly correlated(r=-0.831). This indicates that soil moisture significantly influences the long-term change of cambial electrical resistance.

An Efficient Method for Establishing Canopy Photosynthesis Curves of Lettuce (Lactuca sativa L.) with Light Intensity and CO2 Concentration Variables Using Controlled Growth Chamber (생육 챔버를 이용하여 광도 및 이산화탄소 농도 변수를 갖는 상추(Lactuca sativa L.)의 군락 광합성 곡선의 효율적 도출 방법)

  • Jung, Dae Ho;Kim, Tae Young;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.29 no.1
    • /
    • pp.43-51
    • /
    • 2020
  • For developing a canopy photosynthesis model, an efficient method to measure the photosynthetic rate in a growth chamber is required. The objective of this study was to develop a method for establishing canopy photosynthetic rate curves of romaine lettuce (Lactuca sativa L.) with light intensity and CO2 concentration variables using controlled growth chamber. The plants were grown in plant factory modules, and the canopy photosynthesis rates were measured in sealed growth chambers made of acrylic (1.0 × 0.8 × 0.5 m). First, the canopy photosynthetic rates of the plants were measured, and then the time constants were compared between two application methods: 1) changing light intensity (340, 270, 200, and 130 μmol·m-2·s-1) at a fixed CO2 concentration (1,000 μmol·mol-1) and 2) changing CO2 concentration (600, 1,000, 1,400, and 1,800 μmol·mol-1) at a fixed light intensity (200 μmol·m-2·s-1). Second, the canopy photosynthetic rates were measured by changing the light intensity at a CO2 concentration of 1,000 μmol·mol-1 and compared with those measured by changing the CO2 concentration at a light intensity of 200 μmol·m-2·s-1. The time constant when changing the CO2 concentration at the fixed light intensity was 3.2 times longer, and the deviation in photosynthetic rate was larger than when changing the light intensity. The canopy photosynthetic rate was obtained stably with a time lag of one min when changing the light intensity, while a time lag of six min or longer was required when changing the CO2 concentration. Therefore, changing the light intensity at a fixed CO2 concentration is more appropriate for short-term measurement of canopy photosynthesis using a growth chamber.

Fabrication of Anti-moiré Filter with Light Diffusing Particles Using Slot-die Coating (슬롯 다이 코팅을 이용한 광 확산 입자 기반 Anti-Moiré Filter 제작)

  • Hong, Songeun;Jeon, Kyungjun;Shin, Youngkyun;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.33-38
    • /
    • 2022
  • With an attempt to suppress the moiré phenomenon caused by the interference between the black matrix of a display panel and the metal grid of a camera, we have fabricated an anti-moiré filter using light diffusing particles (LDPs) with the average diameter of 20 ㎛. It is demonstrated that the anti-moiré filter coated on a glass substrate (370 mm × 470 mm) using a table slot-die coater reduces the moiré intensity to a great extent when the area covered by LDPs is 50%. To quantify the intensity of moiré phenomenon, we have measured the lightness ratio and found that it is reduced from 132.12 down to 105.71 by the filter. To find the optimum area covered by LDPs, we have performed ray tracing simulations using Mie scatters as a substitute for LDPs. From the simulated irradiation distribution, we have calculated the standard deviation (SD) and contrast ratio (CR) to evaluate the moiré strength. As expected, the SD and CR values decrease with increasing covered area by LDPs. However, there exists a trade-off between the transmittance of the filter and its capability of reducing the moiré intensity in determining the area covered by LDPs.

Development of a Surface Roughness Measurement Method Using Reflected Laser Beam Image and Its Application (레이저광 반사 화상을 이용한 표면 거칠기 측정법의 개발과 적용)

  • Yun, Yun-Feng-Shen;Kim, haa-young;An, jung-hwan;Chi, ei-jon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.51-57
    • /
    • 2001
  • A light beam reflected from a machined surface generally containes information concerning about its surface roughness. This study examines and proposes a surface roughness measurement technique for on-machine measurement of machined surfaces. The technique is based on the measurement of a reflected laser beam pattern and the statistical analysis of its light intensity distribution. The surface roughness was found to be closely related to the standard deviation of the light intensity on the primary axis of the reflected pattern. An image acquisition device is made up of a laser diode, a half mirror, a screen, and a CCD camera. The exact image with the primary and secondary axes of a reflected laser beam pattern is calculated through such image processing algorithm as thresholding, edge detection, image rotation, segmentation, etc. A median filter and a surrounding light correction algorithm are improve the image quality and reduce the measuring error. Using the developed measuring device the effect of screen materials and workpiece and workpiece materials was investigated. Experimental results regarding to relatively high-quality surfaces machined by grinding, polishing, lapping processes have shown the measurement error is within 10% in the range of $0.1{mu}m~0.8{\mu}m R_q.$Therefore, the proposed method is thought to be effectively used when quick measurements is needed with workpieces fixed on the machine.

  • PDF

Electrical Properties of Photovoltaic Modules with test condition of Solar Simulator (Solar Simulator의 시험조건에 따른 태양전지모듈의 전기적 특성 분석)

  • Kang, Gi-Hwan;Park, Chi-Hong;Yu, Gwon-Jong;Park, I-Jun;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1775-1777
    • /
    • 2005
  • In this paper, maximum output of three different temperature conditions of the photovoltaic modules have been tested and compared to obtain the optimum conditions for the maximum power operation. Temperatures of the cell and module have been set to $20^{\circ}C$, $25^{\circ}C$ and $30^{circ}C$ under the constant light intensity of 1kW/$m^2$. 125${\times}$125mm 36 single crystal solar cells having 80 [W] each have been serially connected in the module. From the results, maximum output deviation of 4.67% has been obtained under the ceil temperature of $20^{\circ}C$ and module temperature of $30^{\circ}C$ while minimum deviation of 0.41${\sim}$0.92% has been measured under the same temperatures of cell and module. Therefore it has been found that the temperature of both cell and module should be fixed to $25^{\circ}C$ to obtain stable data unless the temperature coefficient should be compensated for the testing sample.

  • PDF

Analysis of Spatial and Vertical Variability of Environmental Parameters in a Greenhouse and Comparison of Carbon Dioxide Concentration in Two Different Types of Greenhouses (온실 환경요인의 공간적 및 수직적 특성 분석과 온실 종류에 따른 이산화탄소 농도 비교)

  • Jeong, Young Ae;Jang, Dong Cheol;Kwon, Jin Kyung;Kim, Dae Hyun;Choi, Eun Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.221-229
    • /
    • 2022
  • This study was aimed to investigate spatial and vertical characteristics of greenhouse environments according to the location of the environmental sensors, and to investigate the correlations between temperature, light intensity, and carbon dioxide (CO2) concentration according to the type of greenhouse. Temperature, relative humidity (RH), CO2, and light sensors were installed in the four-different vertical positions of the whole canopy as well as ground and roof space at the five spatial locations of the Venlo greenhouse. Also, correlations between temperature, light intensity, and CO2 concentration in Venlo and semi-closed greenhouses were analyzed using the Curve Expert Professional program. The deviations among the spatial locations were larger in the CO2 concentration than other environmental factors in the Venlo greenhouse. The average CO2 concentration ranged from 465 to 761 µmol·mol-1 with the highest value (646 µmol·mol-1) at the Middle End (4ME) close to the main pipe (50Ø) of the liquefied CO2 gas supply and lowest (436 µmol·mol-1) at the Left Middle (5LM). The deviation among the vertical positions was greater in temperature and relative humidity than other environments. The time zone with the largest deviation in average temperature was 2 p.m. with the highest temperature (26.51℃) at the Upper Air (UA) and the lowest temperature (25.62℃) at the Lower Canopy (LC). The time zone with the largest deviation in average RH was 1 p.m. with the highest RH (76.90%) at the LC and the lowest RH (71.74%) at the UA. The highest average CO2 concentration at each hour was Roof Air (RF) and Ground (GD). The coefficient of correlations between temperature, light intensity, and CO2 concentration were 0.07 for semi-closed greenhouse and 0.66 for Venlo greenhouse. All the results indicate that while the CO2 concentration in the greenhouse needs to be analyzed in the spatial locations, temperature and humidity needs to be analyzed in the vertical positions of canopy. The target CO2 fertilization concentration for the semi-closed greenhouse with low ventilation rate should be different from that of general greenhouses.

Dimension Measurement of Nuclear Fuel Rods Using an Image Processing Technology (영상처리기술에 의한 핵연료봉의 제원 측정)

  • Koo, D.S.;Min, D.K.;You, G.S.;Shin, H.S.;Hong, K.P.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.2
    • /
    • pp.79-84
    • /
    • 1999
  • An image processing technology was developed to measure the dimension of nuclear fuel rods and the diameter of nuclear fuel rods was measured by this method. It was confirmed that parameters such as camera-to-specimen distance. camera location, light intensity and light characteristic would affect dimension measurement of nuclear fuel rods. The percent relative error and percent standard deviation of measuring the diameter of nuclear fuel rods using image processing method were 4.88%, ${\pm}3.34%$ while the percent relative error and percent standard deviation using conventional method were 12.7%, ${\pm}9.72%$, respectively. The accuracy of diameter measurement of nuclear fuel rods using image processing method was about 3 times as high as that using conventional method.

  • PDF