• 제목/요약/키워드: Light hydrocarbon

검색결과 78건 처리시간 0.023초

토양중 Light Hydrocarbon의 용매추출에 미치는 계면활성제의 영향 (Effect of Surfactant on Solvent Extraction for Light Hydrocarbon from Soils)

  • Hwang, Keon-Joong;Atalay, Asmare
    • 한국환경보건학회지
    • /
    • 제24권2호
    • /
    • pp.74-79
    • /
    • 1998
  • 본 실험은 light hydrocarbon에 오염된 토양을 용매 추출할 때 계면활성제의 영향을 평가하고자 6가지의 계면활성제 (Witbreak DPG-482, Witbreak DRA-22, Witcomul 4016, Witcolate SL-1, Adsee 799, Triton X-100)와 2가지 용매(물, 메타놀)를 대상으로 실험하였다. Light hydrocarbon으로는 benzene, toluene, ethyl bnzene, o-xylene, m-xylene, p-xylene, n-propyl benzene, 1,2,4-trimethyl benzene, 그리고 n-butyl benzene등 9가지를 대상으로 하였다. 계면활성제중 Adsee-799과 Witbreadk DRA-22가 토양중 light hydrocarbon의 물추출 효율을 다소 증가시키는 것으로 나타나고 있으며, 나머지 계면활성제는 효과가 없었다. 또한 물중의 계면활성제의 농도가 0.5%이하에서는 효과가 없는 것으로 나타나고 있으며, 계면활성제의 농도가 4%일때 평균 10.8%의 추출증가 효과가 있었다. 메타놀을 추출용매로 사용할 때에는 Witbread DPG-782와 Witbreak DRA-22가 약 10%의 추출증가 효과를 나타내고 있었다.

  • PDF

Light Hydrocarbon에 오염된 토양의 용매추출조건에 관한 연구 (Determination of Soil Washing Condition for Light Hydrocarbon Contaminated Soils)

  • Hwang, Keon-Joong;Atalay, Asmare
    • 한국환경보건학회지
    • /
    • 제23권4호
    • /
    • pp.82-90
    • /
    • 1997
  • 본 실험은 석유의 주요성분인 benzene, toluene, p,m,o-xylene, ethylbenzene, n-propylbenzene, 1,2,4-trimethylbenzene, n-butylbenzene 등 light hydrocarbon에 오염된 토양의 회복에 필요한 최적 용매추출 조건을 밝히기 위하여 실시하였다. 토양의 수분함량이 증가할수록 추출효율은 감소하였으며, Methanol을 용매로 사용하였을때에 BTEX화합물은 1시간 추출시 최고 추출효율에 도달하였으며 고분자 hydrocarbon은 4시간이상 추출시 최고 추출효율에 도달하였다. 2-Propanol을 추출용매로 사용할때는 모든 light hydrocarbon은 추출 4시간 경과시 최고의 추출효율을 나타냈다. 추출용매와 토양의 비율이 2:1일때 가장 경제적이고 효율적이고 추출이 이루어 졌으며, 0.4mg/g이상의 토양오염 농도에서 최적의 추출효과가 나타났다. 위의 최적조건으로 light hydrocarbon 오염토양을 batch extraction을 이용하여 추출하였을 때 평균 66%의 light hydrocarbon이 회수되었으며, 회수율은 토양의 종류, 추출용매의 종류 그리고 hydrocarbon의 종류에 따라 좌우되었다. 본 연구의 결과는 석유에 오염된 토양의 회복을 위한 토양세척에 사용될 수 있을 것으로 사료된다.

  • PDF

Universal Indicators for Oil and Gas Prospecting Based on Bacterial Communities Shaped by Light-Hydrocarbon Microseepage in China

  • Deng, Chunping;Yu, Xuejian;Yang, Jinshui;Li, Baozhen;Sun, Weilin;Yuan, Hongli
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권7호
    • /
    • pp.1320-1332
    • /
    • 2016
  • Light hydrocarbons accumulated in subsurface soil by long-term microseepage could favor the anomalous growth of indigenous hydrocarbon-oxidizing microorganisms, which could be crucial indicators of underlying petroleum reservoirs. Here, Illumina MiSeq sequencing of the 16S rRNA gene was conducted to determine the bacterial community structures in soil samples collected from three typical oil and gas fields at different locations in China. Incubation with n-butane at the laboratory scale was performed to confirm the presence of "universal microbes" in light-hydrocarbon microseepage ecosystems. The results indicated significantly higher bacterial diversity in next-to-well samples compared with background samples at two of the three sites, which were notably different to oil-contaminated environments. Variation partitioning analysis showed that the bacterial community structures above the oil and gas fields at the scale of the present study were shaped mainly by environmental parameters, and geographic location was able to explain only 7.05% of the variation independently. The linear discriminant analysis effect size method revealed that the oil and gas fields significantly favored the growth of Mycobacterium, Flavobacterium, and Pseudomonas, as well as other related bacteria. The relative abundance of Mycobacterium and Pseudomonas increased notably after n-butane cultivation, which highlighted their potential as biomarkers of underlying oil deposits. This work contributes to a broader perspective on the bacterial community structures shaped by long-term light-hydrocarbon microseepage and proposes relatively universal indicators, providing an additional resource for the improvement of microbial prospecting of oil and gas.

기체 연료를 사용한 전기점화기관에서 운전조건이 HC 배출물 성분에 미치는 영향 (Effects of Operation Conditions on Hydrocarbon Components Emitted from SI Engine with Gaseous Fuels)

  • 박종범;최희명;이형승;김응서
    • 한국자동차공학회논문집
    • /
    • 제6권1호
    • /
    • pp.108-121
    • /
    • 1998
  • Using gas chromatography, the light hydrocarbon emissions were analyzed from SI engine fueled with methane and liquified petroleum gas(LPG), and the effects of fuel and engine operating condition were discussed. For this purpose, 14 species of light hydrocarbon including 1, 3-butadiene were separated, calibrated with standard gas, and measured from undiluted emissions. The brake specific hydrocarbon emission(BSHC) and ozone forming potential(BSO)3 were calculated and discussed with the changes of fuel, engine speed, load, fuel/air equivalence ratio, coolant temperature, and spark timing. As a result, exhaust emission was composed of mainly fuel composed of mainly fuel comp- onent and other olefin components of similar carbon number. The olefin components such as ethylene and propylene determine most of the ozone forming potential. The fraction of fuel component in total hydrocarbon emission was bigger with methane fuel than with LPG fuel. Also fuel fraction increased at high speed or high speed or high temperature of exhaust gas, and to lesser extent with high coolant temperature and retarded spark. However, the effect of equivalence ratio had different tendency according to fuels.

  • PDF

Hydrocarbon Uptake Modes에 따른 유류분해 미생물 혼합체의 원유분해능 (Effect of Hydrocarbon Uptake Modes on Oil Degradation Rate by Mixed Cultures of Petroleum Degraders)

  • 고성환;이홍금;김상진
    • KSBB Journal
    • /
    • 제13권5호
    • /
    • pp.606-614
    • /
    • 1998
  • In this study, biodegradation rate of Arabian light crude oil by mixed cultures of selected petroleum-degraders was determined. Their modes of hydrocarbon uptake were then observed to determine whether there are differences in biodegradation rate by the mixed cultures. By the mixed cultures of petroleum-degraders having same modes of hydrocarbon uptake, such as strain US1 and K1 (using pseudo-solubilized hydrocarbons by a biosurfactants), K2-2 and P1(using hydrocarbons by direct contact), CL 180 and IC-10 (mixed type of uptake modes), the biodegradation rates of aliphatics in the crude oil were increased more than those by their pure cultures, about 40%, 25% and 20%, respectively. Biodegradation rate of strain KH3-2 (using only water- dissolved hydrocarbons) was increased by mixed cultures with strain K1, CL180 or IC-10 possessing high emulsifying activity. However, the biodegradation rate of the crude oil was decreased about 20%-40% by the mixed cultures of petroleum-degraders having different mode of hydrocarbon uptake, such as addition of strain US1 or K1 in the cultures of K2-2 or P1. Biosurfactants produced by US1 or K1 seems to enhance the emulsification of crude oil in aqueous phase but inhibit the attachment of K2-2 or P1 to crude oil. As same phenomena, the addition to Triton X-100 into the culture of strain US1, K1, CL180, IC-10 or KH3-2 increased the biodegradation rate, but the addition in the culture of strain K2-2 or P1 decreased the biodegradation rate. The mixed culture made of CL180, IC-10 and KH3-2 degraded 61.5% of aliphatics and 69% of aromatics in 3% (v/v) of Arabian light crude oil added.

  • PDF

The Production of Algal Hydrocarbons in Outdoor Cultivations of Dunaliella salina 1650

  • Pak, Jin-Hong;Lee, Shin-Young;Kim, Young-Nam
    • Journal of Microbiology and Biotechnology
    • /
    • 제3권1호
    • /
    • pp.46-50
    • /
    • 1993
  • In 12:12 hour light/dark cycle cultivation of D. salina 1650, maximum specific growth rate of 0.59 (l/day) and 0.35 (g-crude hydrocarbons/l/day) were obtained. The cell growth was inhibited at above 15$\times$$10^{-4} (kcal/cm^2/h)$ of light intensity in an outdoor cultivation. It was also showed that temperature is one of the critical growth parameters in the outdoor cultivation. The hydrocarbon production from D. salina 1650 seems to be partially growth related production process, and these algal hydrocarbons can be used for subsituting petroleum directly or through cracking processes. The value of weight fraction carbon of D. salina 1650 was similar to that of Botryococcus braunii and so was the hydrocarbon productivity.

  • PDF

The developments of heavy hydrocarbon reformer for SOFC

  • 배중면
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.58.2-58.2
    • /
    • 2012
  • Heavy hydrocarbon reforming is a core technology for "Dirty energy smart". Heavy hydrocarbons are components of fossil fuels, biomass, coke oven gas and etc. Heavy hydrocarbon reforming converts the fuels into $H_2$-rich syngas. And then $H_2$-rich syngas is used for the production of electricity, synthetic fuels and petrochemicals. Energy can be used efficiently and obtained from various sources by using $H_2$-rich syngas from heavy hydrocarbon reforming. Especially, the key point of "Dirty energy smart" is using "dirty fuel" which is wasted in an inefficient way. New energy conversion laboratory of KAIST has been researched diesel reforming for solid oxide fuel cell (SOFC) as a part of "Dirty energy smart". Diesel is heavy hydrocarbon fuels which has higher carbon number than natural gas, kerosene and gasoline. Diesel reforming has difficulties due to the evaporation of fuels and coke formation. Nevertheless, diesel reforming technology is directly applied to "Dirty fuel" because diesel has the similar chemical properties with "Dirty fuel". On the other hand, SOFC has advantages on high efficiency and wasted heat recovery. Nippon oil Co. of Japan recently commercializes 700We class SOFC system using city gas. Considering the market situation, the development of diesel reformer has a great ripple effect. SOFC system can be applied to auxiliary power unit and distributed power generation. In addition, "Dirty energy smart" can be realized by applying diesel reforming technology to "Dirty fuel". As well as material developments, multidirectional approaches are required to reform heavy hydrocarbon fuels and use $H_2$-rich gas in SOFC. Gd doped ceria (CGO, $Ce_{1-x}Gd_xO_{2-y}$) has been researched for not only electrolyte materials but also catalysts supports. In addition, catalysts infiltrated electrode over porous $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_3-{\delta}$ and catalyst deposition at three phase boundary are being investigated to improve the performance of SOFC. On the other hand, nozzle for diesel atomization and post-reforming for light-hydrocarbons removal are examples of solving material problems in multidirectional approaches. Likewise, multidirectional approaches are necessary to realize "Dirty energy smart" like reforming "Dirty fuel" for SOFC.

  • PDF

국내 유통 중인 석유제품 내 석유계 총 탄화수소화합물(TPH) 분석 (Analysis of Total Petroleum Hydrocarbon in Domestic Distribution Petroleum)

  • 임영관;김정민;김종렬;권민정;이경흠;류승현
    • 공업화학
    • /
    • 제27권5호
    • /
    • pp.546-550
    • /
    • 2016
  • 국내 토양오염의 60~70% 이상이 석유제품에 의한 오염이며, 석유제품에 의해 토양오염이 발생될 경우, 토양환경보전법 상 B T E X와 total petroleum hydrocarbon (TPH)를 분석하도록 명시하고 있다. 본 연구에서는 국내 유통 중인 석유제품에 대한 구간별 TPH 패턴을 분석하였다. 또한 $C_8{\sim}C_{40}$ 구간만을 분석하는 현행 토양오염공정시험기준의 문제점을 보완하여 석유제품 내 TPH를 정량분석 하였다. 분석결과, 토양오염공정시험기준 분석조건으로 분석한 결과값과 보완된 분석방법을 이용했을 시, 휘발유와 용제 1호 같은 저비점 유류의 경우, 최대 85%의 차이가 발생하는 것을 확인하였다.

정적 용기내의 직접분사식 스파크 점화 성층 연소에 관한 연구 (A Study on Direct Injection Stratified Charge Combustion with Spark Ignition in Constant Volume Bomb)

  • 홍명석;김경석
    • 한국자동차공학회논문집
    • /
    • 제2권5호
    • /
    • pp.30-40
    • /
    • 1994
  • The direct-injection stratified-charge engine has the advantages of higher thermal efficiency and less CO and $NO_x$ emission levels than conventional spark ignition engines. However, its actual utilization is prevented by high unburned hydrocarbon emission levels during light-load operations. In this paper, fundamental studies were carried out using a pancake type constant volume bomb. The effects of intensification of local premixing by tangential and radial fuel injection were examined experimentally. Unburned hydrocarbon emission levels with radial fuel injection were shown to be lower than those of tangential fuel injection cases. The stratification and mixing process of fuel jet and combustion process were observed by schlieren photography.

  • PDF

광촉매를 이용한 탄화수소 저감 연구 (A Study of Hydrocarbon Reduction with Photocatalysts)

  • 손건석;고성혁;김대중;이귀영
    • 한국자동차공학회논문집
    • /
    • 제8권5호
    • /
    • pp.47-53
    • /
    • 2000
  • To overcome the shortage of conventional TWC that is activated at high temperature, higher than 25$0^{\circ}C$, photocatalyst is considered as an new technology. Because the photocatalytic reaction of photocatalyst is not a thermo mechanical reaction, it is necessary to heat the system to start the reaction. It can be activated just by ultra violet light that includes wavelengths shorter than 400 nanometers even at ambient temperature. In this study photocatalytic reduction of hydrocarbon was investigated with a model gas test. To understand the effects of co-existence gases on the hydrocarbon reduction by photoreaction, CO and NO, $O_2, H_2O$ gases those are components of exhaust gases of gasoline engine are supplied with C3H8/N2 to a photoreactor. The photoreactor contains $TiO_2$ photocatalyst powders and a UV bulb. The results show that oxygen is the most important factor to reduce HC emission with photocatalyst. Photocatalyst seems to have a good probability for automotive application to reduce cold start HC emissions.

  • PDF