Browse > Article
http://dx.doi.org/10.4014/jmb.1602.02045

Universal Indicators for Oil and Gas Prospecting Based on Bacterial Communities Shaped by Light-Hydrocarbon Microseepage in China  

Deng, Chunping (State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University)
Yu, Xuejian (State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University)
Yang, Jinshui (State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University)
Li, Baozhen (State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University)
Sun, Weilin (National Research Center for Geoanalysis)
Yuan, Hongli (State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.7, 2016 , pp. 1320-1332 More about this Journal
Abstract
Light hydrocarbons accumulated in subsurface soil by long-term microseepage could favor the anomalous growth of indigenous hydrocarbon-oxidizing microorganisms, which could be crucial indicators of underlying petroleum reservoirs. Here, Illumina MiSeq sequencing of the 16S rRNA gene was conducted to determine the bacterial community structures in soil samples collected from three typical oil and gas fields at different locations in China. Incubation with n-butane at the laboratory scale was performed to confirm the presence of "universal microbes" in light-hydrocarbon microseepage ecosystems. The results indicated significantly higher bacterial diversity in next-to-well samples compared with background samples at two of the three sites, which were notably different to oil-contaminated environments. Variation partitioning analysis showed that the bacterial community structures above the oil and gas fields at the scale of the present study were shaped mainly by environmental parameters, and geographic location was able to explain only 7.05% of the variation independently. The linear discriminant analysis effect size method revealed that the oil and gas fields significantly favored the growth of Mycobacterium, Flavobacterium, and Pseudomonas, as well as other related bacteria. The relative abundance of Mycobacterium and Pseudomonas increased notably after n-butane cultivation, which highlighted their potential as biomarkers of underlying oil deposits. This work contributes to a broader perspective on the bacterial community structures shaped by long-term light-hydrocarbon microseepage and proposes relatively universal indicators, providing an additional resource for the improvement of microbial prospecting of oil and gas.
Keywords
Light-hydrocarbon microseepage; bacterial community structure; hydrocarbon-oxidizing bacteria; linear discriminant analysis effect size;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Wang LY, Ke WJ, Sun XB, Liu JF, Gu JD, Mu BZ. 2014. Comparison of bacterial community in aqueous and oil phases of water-flooded petroleum reservoirs using pyrosequencing and clone library approaches. Appl. Microbiol. Biotechnol. 98: 4209-4221.   DOI
2 Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73: 5261-5267.   DOI
3 Wasmund K, Burns KA, Kurtboke DI, Bourne DG. 2009. Novel alkane hydroxylase gene (alkB) diversity in sediments associated with hydrocarbon seeps in the Timor Sea, Australia. Appl. Environ. Microbiol. 75: 7391-7398.   DOI
4 Wu B, Tian J, Bai C, Xiang M, Sun J, Liu X. 2013. The biogeography of fungal communities in wetland sediments along the Changjiang River and other sites in China. ISME J. 7: 1299-1309.   DOI
5 Wu X, Xu X, Wu C, Fu S, Deng M, Feng L, et al. 2014. Responses of microbial communities to light-hydrocarbon microseepage and novel indicators for microbial prospecting of oil/gas in the Beihanzhuang Oilfield, northern Jiangsu, China. Geomicrobiol. J. 31: 697-707.   DOI
6 Xu K, Tang Y, Ren C, Zhao K, Sun Y. 2013. Diversity and abundance of n-alkane-degrading bacteria in the near-surface soils of a Chinese onshore oil and gas field. Biogeosciences 10: 2041-2048.   DOI
7 Yang YY, Wang J, Liao JQ, Xie SG, Huang Y. 2014. Distribution of naphthalene dioxygenase genes in crude oil-contaminated soils. Microb. Ecol. 68: 785-793.   DOI
8 Yang YY, Wang J, Liao JQ, Xie SG, Huang Y. 2015. Abundance and diversity of soil petroleum hydrocarbon-degrading microbial communities in oil exploring areas. Appl. Environ. Microbiol. 99: 1935-1946.
9 Yoon JH. 2004. Nocardioides aquiterrae sp. nov., isolated from groundwater in Korea. Int. J. Syst. Evol. Microbiol. 54: 71-75.   DOI
10 Zhang F, She YH, Zheng Y, Zhou ZF, Kong SQ, Hou DJ. 2010. Molecular biologic techniques applied to the microbial prospecting of oil and gas in the Ban 876 gas and oil field in China. Appl. Microbiol. Biotechnol. 86: 1183-1194.   DOI
11 Zhang T, Shao MF, Ye L. 2012. 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J. 6: 1137-1147.   DOI
12 Zhang Y, Cong J, Lu H, Li G, Xue Y, Deng Y, et al. 2015. Soil bacterial diversity patterns and drivers along an elevational gradient on Shennongjia Mountain, China. Microb. Biotechnol. 8: 739-746.   DOI
13 Zhang Y, Tang X, Shen B, Yu X, Wang E, Yuan H. 2013. Identification and characterization of the butane-utilizing bacterium, Arthrobacter sp. PG-3-2, harboring a novel bmoX gene. Geomicrobiol. J. 30: 85-92.   DOI
14 Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7: 335-336.   DOI
15 Bell TH, Yergeau E, Maynard C, Juck D, Whyte LG, Greer CW. 2013. Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance. ISME J. 7: 1200-1210.   DOI
16 Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, et al. 2013. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10: 57-59.   DOI
17 Brazelton WJ, Morrill PL, Szponar N, Schrenk MO. 2013. Bacterial communities associated with subsurface geochemical processes in continental serpentinite springs. Appl. Environ. Microbiol. 79: 3906-3916.   DOI
18 Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 108: 4516-4522.   DOI
19 Chapin FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, et al. 2000. Consequences of changing biodiversity. Nature 405: 234-242.   DOI
20 Chen H, Mothapo NV, Shi W. 2015. Soil moisture and pH control relative contributions of fungi and bacteria to N2O production. Microb. Ecol. 69: 180-191.   DOI
21 Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27: 2194-2200.   DOI
22 Dayal AM, Mani D, Madhavi T, Kavitha S, Kalpana MS, Patil DJ, Sharma M. 2014. Organic geochemistry of the Vindhyan sediments: implications for hydrocarbons. J. Asian Earth Sci. 91: 329-338.   DOI
23 Duah-Yentumi S, Ronn R, Christensen S. 1998. Nutrients limiting microbial growth in a tropical forest soil of Ghana under different management. Appl. Soil Ecol. 8: 19-24.   DOI
24 Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10: 996-998.   DOI
25 EPA of China. 2002. Water and Wastewater Analyzing Methods, pp. 236-281. China Environmental Science Press, Beijing.
26 Etiope G, Ciccioli P. 2009. Earth’s degassing: a missing ethane and propane source. Science 323: 478.   DOI
27 Fierer N, Jackson RB. 2006. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 103: 626-631.   DOI
28 Ge Y, He JZ, Zhu YG, Zhang JB, Xu Z, Zhang LM, Zheng YM. 2008. Differences in soil bacterial diversity: driven by contemporary disturbances or historical contingencies? ISME J. 2: 254-264.   DOI
29 Gutierrez T, Singleton DR, Berry D, Yang T, Aitken MD, Teske A. 2013. Hydrocarbon-degrading bacteria enriched by the Deepwater Horizon oil spill identified by cultivation and DNA-SIP. ISME J. 7: 2091-2104.   DOI
30 Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, et al. 2011. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21: 494-504.   DOI
31 Jaekel U, Vogt C, Fischer A, Richnow HH, Musat F. 2014. Carbon and hydrogen stable isotope fractionation associated with the anaerobic degradation of propane and butane by marine sulfate-reducing bacteria. Environ. Microbiol. 16: 130-140.   DOI
32 Hogberg MN, Hogberg P, Myrold DD. 2007. Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? Oecologia 150: 590-601.   DOI
33 Huesemann MH. 1995. Predictive model for estimating the extent of petroleum hydrocarbon biodegradation in contaminated soils. Environ. Sci. Technol. 29: 7-18.   DOI
34 Jaekel U, Musat N, Adam B, Kuypers M, Grundmann O, Musat F. 2012. Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps. ISME J. 7: 885-895.   DOI
35 Kleindienst S, Herbst FA, Stagars M, von Netzer F, von Bergen M, Seifert J, et al. 2014. Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps. ISME J. 8: 2029-2044.   DOI
36 Legendre P, Oksanen J, ter Braak CJF. 2011. Testing the significance of canonical axes in redundancy analysis. Methods Ecol. Evol. 2: 269-277.   DOI
37 Liang Y, Wu L, Clark IM, Xue K, Yang Y, Van Nostrand JD, et al. 2015. Over 150 years of long-term fertilization alters spatial scaling of microbial biodiversity. mBio 6: 1-9.   DOI
38 Liang YT, Van Nostrand JD, Deng Y, He ZL, Wu LY, Zhang X, et al. 2011. Functional gene diversity of soil microbial communities from five oil-contaminated fields in China. ISME J. 5: 403-413.   DOI
39 Ma YF, Wang L, Shao ZZ. 2006. Pseudomonas, the dominant polycyclic aromatic hydrocarbon-degrading bacteria isolated from Antarctic soils and the role of large plasmids in horizontal gene transfer. Environ. Microbiol. 8: 455-465.   DOI
40 Liang YT, Zhang X, Wang J, Li GH. 2012. Spatial variations of hydrocarbon contamination and soil properties in oil exploring fields across China. J. Hazard. Mater. 241: 371-378.   DOI
41 Magoc T, Salzberg SL. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27: 2957-2963.   DOI
42 Man P, Qi HY, Hu Q, Ma AZ, Bai ZH, Zhuang GQ. 2012. Microbial community structure analysis of unexploited oil and gas fields by PCR-DGGE. Environ. Sci. 33: 305-313.
43 Martiny JB, Bohannan BJ, Brown JH, Colwell RK, Fuhrman JA, Green JL, et al. 2006. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4: 102-112.   DOI
44 Mason OU, Hazen TC, Borglin S, Chain PS, Dubinsky EA, Fortney JL, et al. 2012. Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISME J. 6: 1715-1727.   DOI
45 Miqueletto PB, Andreote FD, Dias AC, Ferreira JC, Dos Santos Neto EV, de Oliveira VM. 2011. Cultivation-independent methods applied to the microbial prospection of oil and gas in soil from a sedimentary basin in Brazil. AMB Express 1: 35.   DOI
46 Muyzer G, Dewaal EC, Uitterlinden AG. 1993. Profiling of complex microbial-populations by denaturing gradient gel-electrophoresis analysis of polymerase chain reaction-amplified genes-coding for 16S ribosomal-RNA. Appl. Environ. Microbiol. 59: 695-700.
47 Rasheed MA, Hasan SZ, Rao PLS, Boruah A, Sudarshan V, Kumar B, Harinarayana T. 2015. Application of geo-microbial prospecting method for finding oil and gas reservoirs. Front. Earth Sci. 9: 40-50.   DOI
48 Oksanen J, Blanchet F, Kindt R, Legendre P, O’Hara R, Simpson G, et al. 2013. Vegan: community ecology package. R package version 2.0-7.
49 Perez-de-Mora A, Engel M, Schloter M. 2011. Abundance and diversity of n-alkane-degrading bacteria in a forest soil co-contaminated with hydrocarbons and metals: a molecular study on alkB homologous genes. Microb. Ecol. 62: 959-972.   DOI
50 Raivo K. 2012. pheatmap: Pretty Heatmaps. R package version 1.0.8. Available from https://cran.r-project.org/web/packages/pheatmap/index.html. Accessed Dec. 11, 2015.
51 Rasheed MA, Lakshmi M, Kalpana MS, Dayal AM, Patil DJ. 2013. The microbial activity in development of hydrocarbon microseepage: an indicator for oil and gas exploration. Geosci. J. 17: 329-338.   DOI
52 Rasheed MA, Lakshmi M, Rao PLS, Kalpana MS, Dayal AM, Patil DJ. 2013. Geochemical evidences of trace metal anomalies for finding hydrocarbon microseepage in the petroliferous regions of the Tatipaka and Pasarlapudi areas of Krishna Godavari Basin, India. Pet. Sci. 10: 19-29.   DOI
53 Redmond MC, Valentine DL. 2012. Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill. Proc. Natl. Acad. Sci. USA 109: 20292-20297.   DOI
54 Redmond MC, Valentine DL, Sessions AL. 2010. Identification of novel methane-, ethane-, and propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing. Appl. Environ. Microbiol. 76: 6412-6422.   DOI
55 Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. 2011. Metagenomic biomarker discovery and explanation. Genome Biol. 12: R60.   DOI
56 Samanta SK, Singh OV, Jain RK. 2002. Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol. 20: 243-248.   DOI
57 Schauer R, Bienhold C, Ramette A, Harder J. 2010. Bacterial diversity and biogeography in deep-sea surface sediments of the South Atlantic Ocean. ISME J. 4: 159-170.   DOI
58 Scheu S. 1993. Analysis of the microbial nutrient status in soil microcompartments - earthworm feces from a basalt limestone gradient. Geoderma 56: 575-586.   DOI
59 Shennan JL. 2006. Utilisation of C2-C4 gaseous hydrocarbons and isoprene by microorganisms. J. Chem. Technol. Biotechnol. 81: 237-256.   DOI
60 Taguchi Y, Oono Y. 2005. Relational patterns of gene expression via non-metric multidimensional scaling analysis. Bioinformatics 21: 730-740.   DOI
61 Valentine DL, Kessler JD, Redmond MC, Mendes SD, Heintz MB, Farwell C, et al. 2010. Propane respiration jump-starts microbial response to a deep oil spill. Science 330: 208-211.   DOI
62 Veena Prasanna M, Rasheed MA, Patil DJ, Dayal AM, Rajeswara Reddy B. 2013. Geo-microbiological studies in conjunction with different geo-scientific studies for the evaluation of hydrocarbon prospects in Proterozoic Vindhyan Basin, India. J. Pet. Sci. Eng. 108: 239-249.   DOI
63 Wallisch S, Gril T, Dong X, Welzl G, Bruns C, Heath E, et al. 2014. Effects of different compost amendments on the abundance and composition of alkB harboring bacterial communities in a soil under industrial use contaminated with hydrocarbons. Front. Microbiol. 5: 96.   DOI