• Title/Summary/Keyword: Light field display

Search Result 190, Processing Time 0.027 seconds

A Novel Driving Algorithm for Reducing Dynamic False Contour in PDPs

  • Yoon, Seok-Jeong;Choi, Sang-Yoon;Lee, Seung-Yong;Choi, Byong-Deok;Kwon, Oh-Kyong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1269-1272
    • /
    • 2005
  • We propose a simple and efficient driving algorithm to reduce Dynamic False Contour(DFC) in Plasma Display Panels(PDPs) by using both accumulation and combination of light emission periods. Although the accumulative way of light emission in sustain period is regarded as more effective than combinational way to reduce DFC, it takes much addressing time to express high gray-scale. Therefore, we combine accumulative and combinational light emission methods to reduce DFC. In the proposed method, one TV field (16.7ms) is composed of four combinational subfields for expressing small gray scales and fifteen accumulative subfields for large gray scales. In addition, we use some Graphic Signal Processing(GSP) algorithm to get more natural images by reducing DFC.

  • PDF

Avalanche Phenomenon at The Ultra Shallow $N^+$-P Silicon Junctions (극히 얕은 $N^+$-P 실리콘 접합에서의 어발런치 현상)

  • Lee, Jung-Yong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.3
    • /
    • pp.47-53
    • /
    • 2007
  • Ultra thin Si p-n junctions shallower than $300{\AA}$ were fabricated and biased to the avalanche regime. The ultra thin junctions were fabricated to be parallel to the surface and exposed to the surface without $SiO_2$ layer. Those junctions emitted white light and electrons when junctions were biased in the avalanche breakdown regime. Therefore, we could observe the avalanche breakdown region visually. We could also observe the influence of electric field to the current flow visually by observing the white light which correspond to the avalanche breakdown region. Arrayed diodes emit light and electrons uniformly at the diode area. But, the reverse leakage current were larger than those of ordinary diodes, and the breakdown voltage were less than 10V.

  • PDF

Observation of Discharge Mode Transient from Townsend to Glow at Breakdown of Helium Atmospheric Pressure Dielectric Barrier Discharge (헬륨 대기압 유전체 격벽 방전기의 타운젠트-글로우 방전 모드 전이 연구)

  • Bae, Byeongjun;Kim, Nam-Kyun;Yoon, Sung-Young;Shin, Jun-Seop;Kim, Gon-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.2
    • /
    • pp.26-31
    • /
    • 2016
  • The Townsend to glow discharge mode transition was investigated in the dielectric barrier discharge (DBD) helium plasma source which was powered by 20 kHz / $4.5 kV_{rms}$ high voltage at atmospheric pressure. The spatial profile of the electric field strength at each modes was measured by using the intensity ratio method of two helium emission lines (667.8 nm ($3^1D{\rightarrow}2^1P$) and 728.1 nm ($3^1S{\rightarrow}2^1P$)) and the Stark effect. ICCD images were analyzed with consideration for the electric field property. The Townsend discharge (TD) mode at the initial stage of breakdown has the light emission region located in the vicinity of the anode. The electric field of the light emitting region is close to the applied field in the system. Immediately, the light emitting region moves to the cathode and the discharge transits to the glow discharge (GD) mode. This mode transition can be understood with the ionization wave propagation. The electric field of the emitting region of GD near cathode is higher than that of TD near anode because of the cathode fall formation. This observation may apply to designing a DBD process system and to analysis of the process treatment results.

Narrow Viewing Angle Characteristics of a Fringe-Field Driven Hybrid Aligned Nematic Liquid Cystal Display (Fringe-Field 구동형 Hybrid Aligned Nematic 액정 디스플레이의 좁은 시야각 특성 연구)

  • Lee, Ji-Youn;Ryu, Jae-Woo;Lim, Young-Jin;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.440-441
    • /
    • 2006
  • We have studied the narrow viewing angle liquie crystal displays (LCDs) using a hybrid aligned nematic liquid crystal (LC) cell driven by a fringe field. The device using a LC with positive dielectric anisotropy has a relatively low transmittance. This paper describes how to improve light efficiency by optimizing electrode structure. The results show that the device exhibits a high transmittance of 90%, low driving voltage and narrow viewing angle less than $20^{\circ}$ along horizontal direction which is highly effective for private display application.

  • PDF

A Novel Transflective Homogeneously Aligned Liquid Crystal Display Driven by Fringe-Field (Fringe-Field 구동형 새로운 반투과형 수평 배향 액정 디스플레이)

  • 정태봉;이승희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.6
    • /
    • pp.501-509
    • /
    • 2003
  • We have designed transflective liquid crystal display(LCD) associated with in-plane switching of a LC director driven by fringe-field, unlike other LCD mode. Reflective area consists of a λ/2 compensation film and a LC cell with retardation value(dΔn) of λ/4 with their optic axes making an angle of 15$^{\circ}$ and 75$^{\circ}$ against polarizer, respectively. In the transmissive area, top and bottom polarizers are parallel each other, an LC has a dΔn of λ/2, and another λ/2 compensation film is inserted between the LC cell and bottom polarizer. With the configuration, both devices show dark state initially. When an incident light is 550nm, the device shows wide-viewing-angle characteristics such that in the reflective area the contrast ratio target than 5 exists up to 55$^{\circ}$ of polar angle in all directions and in transmissive area it exists about 100$^{\circ}$ in vortical direction and 110$^{\circ}$ in horizontal direction.

Luminous Characteristics of Transparent Field Emitters Produced by Using Ultra-thin Films of Single Walled Carbon Nanotubes

  • Jang, Eun-Soo;Goak, Jeung-Choon;Lee, Han-Sung;Lee, Seung-Ho;Lee, Nae-Sung
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.31.1-31.1
    • /
    • 2009
  • Carbon nanotubes (CNTs) are attractive material because of their superior electrical, mechanical, and chemical properties. Furthermore, their geometric features such as a large aspect ratio and a small radius of curvature at tip make them ideal for low-voltage field emission devices including backlight units of liquid crystal display, lighting lamps, X-ray source, microwave amplifiers, electron microscopes, etc. In field emission devices for display applications, the phosphor anode is positioned against the CNT emitters. In most case, light generated from the phosphor by electron bombardment passes through the anode front plate to reach observers. However, light is produced in a narrow depth of the surface of the phosphor layer because phosphor particles are big as much as several micrometers, which means that it is necessary to transmit through the phosphor layer. Hence, a drop of light intensity is unavoidable during this process. In this study, we fabricated a transparent cathode back plate by depositing an ultra-thin film of single walled CNTs (SWCNTs) on an indium tin oxide (ITO)-coated glass substrate. Two types of phosphor anode plates were employed to our transparent cathode back plate: One is an ITO glass substrate with a phosphor layer and the other is a Cr-coated glass substrate with phosphor layer. For the former case, light was radiated from both the front and the back sides, where luminance on the back was ~30% higher than that on the front in our experiments. For the other case, however, light was emitted only from the cathode back side as the Cr layer on the anode glass rolled as a reflecting mirror, improving the light luminance as much as ~60% compared with that on the front of one. This study seems to be discussed about the morphologies and field emission characteristics of CNT emitters according to the experimental parameters in fabricating the lamps emitting light on the both sides or only on the cathode back side. The experimental procedures are as follows. First, a CNT aqueous solution was prepared by ultrasonically dispersing purified SWCNTs in deionized water with sodium dodecyl sulfate (SDS). A milliliter or even several tens of micro-liters of CNT solution was deposited onto a porous alumina membrane through vacuum filtration. Thereafter, the alumina membrane was solvated with the 3 M NaOH solution and the floating CNT film was easily transferred to an ITO glass substrate. It is required for CNT film to make standing CNTs up to serve as electron emitter through an adhesive roller activation.

  • PDF

대형 액정 디스플레이(LCD TV)의 백라이트 광원 개발 동향

  • Park, Hae-Il;Lee, Sang-Yu;Seok, Jun-Hyeong
    • Information Display
    • /
    • v.5 no.5
    • /
    • pp.13-18
    • /
    • 2004
  • 액정 디스플레이(LCD)의 대형화 및 저가격화와 더불어 전체 소비전력의 90% 이상, 모듈(module) 원가의 50% 이상을 차지하는 백라이트에 대한 연구가 활발히 진행되고 있다. 이에 기존의 냉음극 형광램프(CCFL)뿐만 아니라 원가 절감 및 특성 향상 기술로서 외부전극 형광램프(External Electrode Fluorescent Lamp), 면광원(Flat Fluorescent Lamp), 발광 다이오드 (Light Emitting Diode), 전계 방출램프(Field Emission Lamp) 등에 대한 개발이 활발히 진행되고 있는 바 이와 같은 다양한 기술의 경쟁을 통하여 보다 고품질 및 저원가 백라이트의 개발이 가능하여 액정 디스플레이의 경쟁력을 확대시킬 것으로 예상된다.

플렉서블 유기발광 디스플레이 개발 동향

  • Kim, Hyeong-Sik;Lee, Gwan-Hyeong
    • Ceramist
    • /
    • v.21 no.1
    • /
    • pp.4-11
    • /
    • 2018
  • Display is an essence in human-machine communication interface. As mobile environment such as internet of things (IOT) and Artificial Intelligence (AI) progress, importance of display increases. Here we review research trend in flexible organic light emitting displays (OLEDs). This review article covers all the components consisting of flexible OELDs and shows direction of the recent research. This paper would be helpful for readers and researchers working in this field and provide perspective for future displays.

Light and bias stability of c-IGO TFTs fabricated by rf magnetron sputtering

  • Jo, Kwang-Min;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.265.2-265.2
    • /
    • 2016
  • Oxide thin film transistors (TFTs) have attracted considerable interest for gate diver and pixel switching devices of the active matrix (AM) liquid crystal display (LCD) and organic light emitting diode (OLED) display because of their high field effect mobility, transparency in visible light region, and low temperature processing below $300^{\circ}C$. Recently, oxide TFTs with polycrystalline In-Ga-O(IGO) channel layer reported by Ebata. et. al. showed a amazing field effect mobility of $39.1cm^2/Vs$. The reason having high field effect mobility of IGO TFTs is because $In_2O_3$ has a bixbyite structure in which linear chains of edge sharing InO6 octahedral are isotropic. In this work, we investigated the characteristics and the effects of oxygen partial pressure significantly changed the IGO thin-films and IGO TFTs transfer characteristics. IGO thin-film were fabricated by rf-magnetron sputtering with different oxygen partial pressure ($O_2/(Ar+O_2)$, $Po_2$)ratios. IGO thin film Varies depending on the oxygen partial pressure of 0.1%, 1%, 3%, 5%, 10% have been some significant changes in the electrical characteristics. Also the IGO TFTs VTH value conspicuously shifted in the positive direction, from -8 to 11V as the $Po_2$ increased from 1% to 10%. At $Po_2$ was 5%, IGO TFTs showed a high drain current on/off ratio of ${\sim}10^8$, a field-effect mobility of $84cm^2/Vs$, a threshold voltage of 1.5V, and a subthreshold slpe(SS) of 0.2V/decade from log(IDS) vs VGS.

  • PDF

Electrical Conduction Characteristics of a Thick-film Form Multiwalled Carbon Nanotubes for Field Electron Emitter

  • Lee, Yun-Hi;Kim, Hoon;Ju, Byeong-Kwon;Yu, Jae-Eun;Oh, Myung-Hwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.53-54
    • /
    • 2000
  • Measurements of the direct current resistivity, on multiwalled carbon nanotubes(MWNT) for field electron emitter source that had been screen printed in a thick film form were made as a function of temperature T in the range of 1.7K-390K. In this measuring temperature range, the electrical resistivity for the MWNT show that the main contribution to the conductivity comes form carries that hop directly between localized states executing variable range hopping processes. This thick-film form system for large area display showed a high bright light emission as well as very low turn-on field as like an individual MWNT system at room temperature. Furthermore, the electron emission characteristics followed well typical Fowler-Nordheim conduction under the vacuum.

  • PDF