• Title/Summary/Keyword: Light field display

Search Result 190, Processing Time 0.02 seconds

Synthesis and Luminescence Characteristics of SrGa2S4:Eu Green Phosphor for Light Emitting Diodes by Solid-State Method (고상법을 이용한 LED용 SrGa2S4:Eu 녹색 형광체의 합성 및 발광특성)

  • Kim, Jae-Myung;Kim, Kyung-Nam;Park, Joung-Kyu;Kim, Chang-Hae;Jang, Ho-Gyeom
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.4
    • /
    • pp.371-378
    • /
    • 2004
  • The $SrGa_2S_4:Eu^{2+}$ green emitting phosphor has been studied as a luminous device for CRT (Cathode Ray Tube) or FED (Field Emission Display) and EL (Electroluminescence). This phosphor, also, is under noticed for LED (Lighting Emitting Diode) phosphor, which makes use of excitation characteristics of long wavelength region. The $SrGa_2S_4:Eu^{2+}$ phosphor was prepared generally conventional synthesis method using flux. However, this method needs high heat-treated temperature, long reaction time, complex process and harmful $H_2S$or $CS_2$ gas. In this works, therefore, we have synthesized $SrGa_2S_4:Eu^{2+}$ using SrS, $Ga_2S_3$, and EuS as starting materials, and the mixture gas of 5% H2/95% N2 was used to avoid the $H_2S$or $CS_2$. We investigated the luminescence characteristic of $SrGa_2S_4:Eu^{2+}$ phosphor prepared in various synthesis conditions, performed post-treatment and sieving process for application to LED.

3-D DISPLAY USING COMPUTER-GENERATED BINARY HOLOGRAMS

  • Yoshinori-Kajiki;Masaaki-Okamoto;Koji-Yamasaki;Eiji-Shimizu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.227-232
    • /
    • 1999
  • We have been making researches on 3-D displays using computer-generated holograms(CGHs). Our CGHs are binary Fresnel holograms that reconstruct point light sources and are recorded by using high resolution laser printers (image setters). We use an image setter with a resolution of 5080 dots per inch. It is possible to reconstruct CGHs with light-emitting points. As the resolution of the image setter is not so high, it is better to use a spherical wave as a reference beam. We considered the recordable points objects are restricted by the low resolution, and proposed the multiplex type hologram to reduce the number of point objects recorded in the unit area of the CGH. We proposed a method to make computer-generated color hologram which could reconstruct color point light sources, by combining RGB color filters with the stripe CGHs corresponding to each color. We considered two kinds of gradation method on our binary CGHs. In this paper, we propose a multiple reconstruction method for improving the narrow viewing field.

Photofield-Effect in Amorphous In-Ga-Zn-O (a-IGZO) Thin-Film Transistors

  • Fung, Tze-Ching;Chuang, Chiao-Shun;Nomura, Kenji;Shieh, Han-Ping David;Hosono, Hideo;Kanicki, Jerzy
    • Journal of Information Display
    • /
    • v.9 no.4
    • /
    • pp.21-29
    • /
    • 2008
  • We studied both the wavelength and intensity dependent photo-responses (photofield-effect) in amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors (TFTs). During the a-IGZO TFT illumination with the wavelength range from $460\sim660$ nm (visible range), the off-state drain current $(I_{DS_off})$ only slightly increased while a large increase was observed for the wavelength below 400 nm. The observed results are consistent with the optical gap of $\sim$3.05eV extracted from the absorption measurement. The a-IGZO TFT properties under monochromatic illumination ($\lambda$=420nm) with different intensity was also investigated and $I_{DS_off}$ was found to increase with the light intensity. Throughout the study, the field-effect mobility $(\mu_{eff})$ is almost unchanged. But due to photo-generated charge trapping, a negative threshold voltage $(V_{th})$ shift is observed. The mathematical analysis of the photofield-effect suggests that a highly efficient UV photocurrent conversion process in TFT off-region takes place. Finally, a-IGZO mid-gap density-of-states (DOS) was extracted and is more than an order of magnitude lower than reported value for hydrogenated amorphous silicon (a-Si:H), which can explain a good switching properties observed for a-IGZO TFTs.

Improved On-off Property of SiO2 Embedded Polyfluorene Polymer-OLED (SiO2의 첨가를 통한 Polyfluorene계 Polymer-OLED의 발광 동작 개선 가능성)

  • Jeon, Byung Joo;Kim, Hyo Jun;Kim, Jong Su;Jeong, Yong Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.40-44
    • /
    • 2017
  • The effect of weak dielectric silicone dioxide($SiO_2$) embedded in polyfluorene(PFO) emitting layer of polymer-based multi structure OLED was investigated. Indium tin oxide(ITO)/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS)/poly(9,9-di-n-octylfluorenyl-2,7-diyl)(PFO)/2,2,2"-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi)/aluminum(Al) structure OLED was fabricated by spin-coating method. Applied electric field causes some effect on $SiO_2$ in PFO layer. Thus, interaction between polymers and affected $SiO_2$ might generate electrical and luminance properties change. Experimental results, show the reduced threshold voltage of 6 V(from 23 V to 17 V). The maximum current density was rather increased from $71A/m^2$ to $610A/m^2$ and maximum brightness was also increased from $7.19cd/m^2$ to $41.03cd/m^2$, 9 and 6 times each. Additionally we obtained colour broadening result due to the increasing of blue-green band emission. Consequently we observed that electrical and luminance properties are enhanced by adding $SiO_2$ and identified the possibility of controlling the emission colour of OLED device according to colour broadening.

  • PDF

A Study on the Emerging Technology Mapping Through Co-word Analysis (Co-word Analysis을 통한 신기술 분야 도식화 방법에 관한 연구)

  • Lee, Woo-Hyoung;Kim, Yun-Myung;Park, Gak-Ro;Lee, Myoung-Ho
    • Korean Management Science Review
    • /
    • v.23 no.3
    • /
    • pp.77-93
    • /
    • 2006
  • In the highly competitive world, there has been a concomitant increase in the need for the research and planning methodology, which can perform an advanced assessment of technological opportunities and an early Perception of threats and possibilities of the emerging technology according to the nation's economic and social status. This research is aiming to provide indicators and visualization methods to measure the latest research trend and aspect underlying scientific and technological documents to researchers and policy planners using 'Co-word Analysis' Organic light emitting diodes(OLED) is an emerging technology in various fields of display and which has a highly prospective market value. In this paper, we presented an analysis on OLED. Co-word analysis was employed to reveal patterns and trends in the OLED fields by measuring the association strength of terms representatives of relevant publications or other texts produced in the OLED field. Data were collected from SCI and the critical keywords could De extracted from the author keywords. These extracted keywords were further standardized. In order to trace the dynamic changes in the OLED field, we presented a variety of technology mapping. The results showed that the OLED field has some established research theme and also rapidly transforms to embrace new themes.

Electrical Characteristics of Pentacene Thin Film Transistors.

  • Kim, Dae-Yop;Lee, Jae-Hyuk;Kang, Dou-Youl;Choi, Jong-Sun;Kim, Young-Kwan;Shin, Dong-Myung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.69-70
    • /
    • 2000
  • There are currently considerable interest in the applications of conjugated polymers, oligomers, and small molecules for thin-film electronic devices. Organic materials have potential advantages to be utilized as semiconductors in field-effect transistors and light-emitting diodes. In this study, pentacene thin-film transistors (TFTs) were fabricated on glass substrate. Aluminums were used for gate electrodes. Silicon dioxide was deposited as a gate insulator by PECVD and patterned by reactive ion etching (R.I.E). Gold was used for the electrodes of source and drain. The active semiconductor pentacene layer was thermally evaporated in vacuum at a pressure of about $10^{-8}$ Torr and a deposition rate $0.3{\AA}/s$. The fabricated devices exhibited the field-effect mobility as large as 0.07 $cm^2/V.s$ and on/off current ratio as larger than $10^7$.

  • PDF

Study on Field Sequential LCD with Electrically Controlled Birefringence (ECB Cell을 이용한 FSLCD용 액정소자 연구)

  • Oh, Sang-Min;Jeong, Byoung-Sun;Jeon, Yeon-Mun;Lee, Seung-Hee;Kim, Hyang-Yul;Lim, Young-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.109-113
    • /
    • 2005
  • We have studied a field sequential liquid crystal display (FSLCD) with electrically controlled birefringence (ECB). The ECB mode exhibiting fast response time, high transmittance, low operating voltage and adequate viewing angle. The positive liquid crystal (LC) is better than negative LC on dielectric anisotropy, birefringence and rotational viscosity. Because $K_{11}$ value out of the elastic coefficient of LC is also larger than $K_{22}$ value, decay time of VA-ECB is advantage. However, the transmittance & response time reduced with decreasing the cell gap. This drawback can be overcome by using LC with high ${\Delta}n$ but VA-ECB is occured loss of light efficiency because the $\gamma$ value increased by high ${\Delta}n$ of LC. Consequently, the HA-ECB mode is one of strongest candidate for FSLCD application.

  • PDF

Growth, Dry Matter Partitioning and Photosynthesis in North American Ginseng Seedlings

  • Proctor, John T.A.;Palmer, John W.;Follett, John M.
    • Journal of Ginseng Research
    • /
    • v.34 no.3
    • /
    • pp.175-182
    • /
    • 2010
  • North American ginseng seedlings (Panax quinquefolius L.) were grown in pots in heated greenhouses, in a cool greenhouse, or in the field, in 11 experiments at various times over 16 years. Crop establishment, dry matter partitioning, photosynthesis, radiation use efficiency and carbon budget were measured and/or calculated in some years. Once the seedling canopy, of about $20\;cm^2$ per seedling, and a leaf area index of 0.37, was established, about 40 days after germination, full canopy display lasted about 87 days. Only 16.6% of the incoming solar radiation was intercepted by the crop, the remainder falling on the mulched soil surface. Total and root dry matter accumulations in the cool greenhouse and in the field were about double that in the heated greenhouses. Partitioning of dry matter to roots (economic yield or harvest index) in the cool greenhouse and in the field was 73% whereas it was 62.5% in the heated greenhouses. The relationship between root dry matter and radiation interception during the full canopy period was linear with growth efficiencies of $2.92\;mg\;MJ^{-1}$ at 4.8% of incoming radiation and $0.30\;mg\;MJ^{-1}$ at 68% of incoming radiation. A photosynthetic rate of $0.39\;g\;m^{-2}\;h^{-1}$ was attained at light saturation of about $150\;{\mu}mol\;m^{-2}\;s^{-1}$ (7.5% of full sunlight); dark respiration was $0.03\;g\;m^{-2}\;h^{-1}$, about 8.5% of maximum assimilation rate. Estimates of dry matter accumulation by growth analysis and by $CO_2$ uptake were similar, 6.21 vs. 7.62 mg $CO_2$, despite several assumptions in $CO_2$ uptake calculations.

Electrical and Optical Study of PLED & OLEDS Structures

  • Mohammed, BOUANATI Sidi;SARI, N. E. CHABANE;Selma, MOSTEFA KARA
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.3
    • /
    • pp.124-129
    • /
    • 2015
  • Organic electronics are the domain in which the components and circuits are made of organic materials. This new electronics help to realize electronic and optoelectronic devices on flexible substrates. In recent years, organic materials have replaced conventional semiconductors in many electronic components such as, organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs) and organic photovoltaic (OPVs). It is well known that organic light emitting diodes (OLEDs) have many advantages in comparison with inorganic light-emitting diodes LEDs. These advantages include the low price of manufacturing, large area of electroluminescent display, uniform emission and lower the requirement for power. The aim of this paper is to model polymer LEDs and OLEDs made with small molecules for studying the electrical and optical characteristics. The purpose of this modeling process is, to obtain information about the running of OLEDs, as well as, the injection and charge transport mechanisms. The first simulation structure used in this paper is a mono layer device; typically consisting of the poly (2-methoxy-5(2'-ethyl) hexoxy-phenylenevinylene) (MEH-PPV) polymer sandwiched between an anode with a high work function, usually an indium tin oxide (ITO) substrate, and a cathode with a relatively low work function, such as Al. Electrons will then be injected from the cathode and recombine with electron holes injected from the anode, emitting light. In the second structure, we replaced MEH-PPV by tris (8-hydroxyquinolinato) aluminum (Alq3). This simulation uses, the Poole-Frenkel -like mobility model and the Langevin bimolecular recombination model as the transport and recombination mechanism. These models are enabled in ATLAS- SILVACO. To optimize OLED performance, we propose to change some parameters in this device, such as doping concentration, thickness and electrode materials.

Effect of the Surface Roughness of ITO Thin Films on the Characteristics of OLED Device (ITO 박막의 표면 거칠기에 따른 OLED 소자의 특성)

  • Lee, Bong-Kun;Lee, Kyu-Mann
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.4
    • /
    • pp.49-52
    • /
    • 2009
  • We have investigated the effect of the surface roughness of TCO substrate on the characteristics of OLED (organic light emitting diodes) devices. In order to control the surface roughness of ITO thin films, we have processed photolithography and reactive ion etching. The micro-size patterned mask was used, and the etching depth was controlled by changing etching time. The surface morphology of the ITO thin film was observed by FESEM and atomic force microscopy (AFM). And then, organic materials and cathode electrode were sequentially deposited on the ITO thin films. Device structure was ITO/$\alpha$-NPD/DPVB/Alq3/LiF/Al. The DPVB was used as a blue emitting material. The electrical characteristics such as current density vs. voltage and luminescence vs. voltage of OLED devices were measured by using spectrometer (minolta CS-1000A). The current vs. voltage and luminance vs. voltage characteristics were systematically degraded with increasing surface roughness. Furthermore, the retention test clearly presented that the reliability of OLED devices was directly influenced with the surface roughness, which could be interpreted in terms of the concentration of the electric field on the weak and thin organic layers caused by the poor step coverage.

  • PDF