• Title/Summary/Keyword: Light field camera

Search Result 125, Processing Time 0.027 seconds

Using DSLR Camera for Digital Film Making (영화제작에서 DSLR 카메라의 활용성에 관한 연구)

  • Son, Bo-Wook;Min, Kyung-Won
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.5
    • /
    • pp.81-90
    • /
    • 2012
  • Since the Canon EOS 5D Mark II with which the Full HD video shooting is possible was launched in 2008, the utilization of the DSLR cameras has been increasing in the video production field. In this thesis, the shortages and advantages of the video functions that the 5D Mark II cameras have will be analysed and they will be compared with the RED cameras that are most widely used in the video production field today. Through this, the utilization of the DSLR camera in the film production field will be investigated. The DSLR camera has the advantage of having good clear picture since it uses the image sensor of big size, and of being able to utilize the various lenses of good quality, and is small in size and light in weight compared to the conventional HD cameras. Although, there are some limitations that there are parts to be improved such as the sound recording problems and development of various additional equipments, the excellent usage that the DLSR cameras have is presenting a new possibility for the film production.

FABRICATION AND TEST OF AN OPTICAL GRISM (가시광선용 그리즘의 제작과 성능시험)

  • Lee, D.H.;Song, J.W.;Yoon, T.S.
    • Publications of The Korean Astronomical Society
    • /
    • v.28 no.3
    • /
    • pp.75-82
    • /
    • 2013
  • An optical grism for education is fabricated and tested. It is composed of a transmission grating as dispersion element and a prism as diffraction angle compensation device. The transmission grating is Edmundoptics #49-584(spatial frequency 600 lines/mm, dimension $50mm{\times}50mm$). The prism is the fused silica type with angles ($41.3^{\circ}$, $-48.7^{\circ}$, $-90^{\circ}$). The grism device is fabricated by bonding the transmission grating and the prism with an optical adhesive. The zig for assembling the grism, telescope and camera is composed of an aluminum tube, an aluminum disk ring and a T-ring camera adaptor. The fabricated optical grism spectrograph is tested in laboratory using Halogen lamp and Neon lamp with DSLR camera. And the grism assembled with reflector telescope is tested in a field using stellar light. The results show good agreements with design parameters. The wavelength coverage range of the grism is 250 nm at the un-deviated wavelength of 506 nm. The wavelength resolution is 0.11 nm/pixel.

MTM MEASUREMENT OF THE LENS ON THE KITSAT-1 EARTH IMAGING SYSTEM (우리별 인공위성의 지상 촬영 장치에 쓰여진 렌즈의 MTF 측정)

  • 류광선;민경욱;유상근
    • Journal of Astronomy and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.320-326
    • /
    • 1994
  • The KITSAT-1 (Auguse, 1992) and the KITSAT-2(September, 1993) were successfully launched and operated by the SatRec(Satellite Research Center). Both carry the CCD cameras to monitor the image of the earth. We used the camera bench type automatic equipment in the KSRI(Korea Standards Research Institute) to measure the MTF(Modulation Transfer Function) value of the lens attached to the CCD camera. We measured the tangential MTF and the sagital MTF by varing the f-number and the field angle. According to the result, the light from a point source is focused within one pixel of the CCD chip when the f-number is smaller than 4.0, and the MTF value becomes smaller as the field angle increases.

  • PDF

Simultaneous velocity and temperature measurement of thermo-fluid flows by using particle imaging technique (화상처리기법을 이용한 온도장 및 속도장 동시 측정기법 개발)

  • Lee, Sang-Joon;Baek, Seung-Jo;Yoon, Jong-Hwan;Doh, Deog-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3334-3343
    • /
    • 1996
  • A quantitative flow visualization technique was developed to measure velocity and temperature fields simultaneously in a two-dimensional cross section of thermo-fluid flows. Thermochromic liquid crystal(TLC) particles are used as temperature sensor and velocity tracers. Illuminating a thermo-fluid flow with a thin sheet of white light, the reflected colors from the TLC particles in the flow were captured simultaneously by two CCD cameras; a 3-chip CCD color camera for temperature field measurement and a black and white CCD camera for velocity field measurement. Variations of temperature field were measured by using a HSI true color image processing system and TLC solution. The relationship between the hue values of TLC color image and real temperature was obtained and this calibration curve was used to measure the true temperature under the same camera and illumination condition. The velocity field was obtained by using a 2-frame PTV technique using the concept of match-probability to track true velocity vectors from two consecutive image frames. These two techniques were applied at the same time to the unsteady thermal-fluid flow in a Hele-Shaw cell to measure the temperature and velocity field simultaneously and some results are discussed.

Single Shot White Light Interference Microscopy for 3D Surface Profilometry Using Single Chip Color Camera

  • Srivastava, Vishal;Inam, Mohammad;Kumar, Ranjeet;Mehta, Dalip Singh
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.784-793
    • /
    • 2016
  • We present a single shot low coherence white light Hilbert phase microscopy (WL-HPM) for quantitative phase imaging of Si optoelectronic devices, i.e., Si integrated circuits (Si-ICs) and Si solar cells. White light interferograms were recorded by a color CCD camera and the interferogram is decomposed into the three colors red, green and blue. Spatial carrier frequency of the WL interferogram was increased sufficiently by means of introducing a tilt in the interferometer. Hilbert transform fringe analysis was used to reconstruct the phase map for red, green and blue colors from the single interferogram. 3D step height map of Si-ICs and Si solar cells was reconstructed at multiple wavelengths from a single interferogram. Experimental results were compared with Atomic Force Microscopy and they were found to be close to each other. The present technique is non-contact, full-field and fast for the determination of surface roughness variation and morphological features of the objects at multiple wavelengths.

Thermo-Analysis of Machining Center Main-Axis Thermo-Displacement for Infrared Rays Thermo-Image Camera (적외선 열화상 카메라를 이용한 머시닝 센터 주축 열변위에 관한 열해석)

  • Kim, Jae-Yeol;Yoon, Sung-Un;Yim, Noh-Bin;Yu, Sin;Ma, Sang-Dong;Yang, Dong-Jo;Song, In-Suk
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.125-130
    • /
    • 2001
  • Diagnosis or measurements using Infrared thermo-image hasn t been available. A quick diagnosis and thermal analysis can be possible when that kind of system is introduced to the investigation of each part. In this study, Infrared Camera, Thermo-vision 900 was used in order to investigate. Infrared Camera usually detects only Infrared wave from the light in order to illustrate the temperature distribution. Infrared diagnosis system can be applied to various field. Also, it is more effective to analyze temperature distribution on the machining center main-axis process.

  • PDF

Calibration Method of Plenoptic Camera using CCD Camera Model (CCD 카메라 모델을 이용한 플렌옵틱 카메라의 캘리브레이션 방법)

  • Kim, Song-Ran;Jeong, Min-Chang;Kang, Hyun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.261-269
    • /
    • 2018
  • This paper presents a convenient method to estimate the internal parameters of plenoptic camera using CCD(charge-coupled device) camera model. The images used for plenoptic camera calibration generally use the checkerboard pattern used in CCD camera calibration. Based on the CCD camera model, the determinant of the plenoptic camera model can be derived through the relationship with the plenoptic camera model. We formulate four equations that express the focal length, the principal point, the baseline, and distance between the virtual camera and the object. By performing a nonlinear optimization technique, we solve the equations to estimate the parameters. We compare the estimation results with the actual parameters and evaluate the reprojection error. Experimental results show that the MSE(mean square error) is 0.309 and estimation values are very close to actual values.

Analyzing the Influence of Spatial Sampling Rate on Three-dimensional Temperature-field Reconstruction

  • Shenxiang Feng;Xiaojian Hao;Tong Wei;Xiaodong Huang;Pan Pei;Chenyang Xu
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.246-258
    • /
    • 2024
  • In aerospace and energy engineering, the reconstruction of three-dimensional (3D) temperature distributions is crucial. Traditional methods like algebraic iterative reconstruction and filtered back-projection depend on voxel division for resolution. Our algorithm, blending deep learning with computer graphics rendering, converts 2D projections into light rays for uniform sampling, using a fully connected neural network to depict the 3D temperature field. Although effective in capturing internal details, it demands multiple cameras for varied angle projections, increasing cost and computational needs. We assess the impact of camera number on reconstruction accuracy and efficiency, conducting butane-flame simulations with different camera setups (6 to 18 cameras). The results show improved accuracy with more cameras, with 12 cameras achieving optimal computational efficiency (1.263) and low error rates. Verification experiments with 9, 12, and 15 cameras, using thermocouples, confirm that the 12-camera setup as the best, balancing efficiency and accuracy. This offers a feasible, cost-effective solution for real-world applications like engine testing and environmental monitoring, improving accuracy and resource management in temperature measurement.

Temperature Field Measurement of Non-Isothermal Jet Flow Using LIF Technique (레이저형광여기(LIF)를 이용한 비등온 제트유동의 온도장 측정)

  • Yoon, Jong-Hwan;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1399-1408
    • /
    • 2000
  • A 2-dimensional temperature field measurement technique using PLIF (Planar Laser Induced Fluorescence) was developed and it was applied to an axisymmetric buoyant jet. Rhodamine B was used as a fluorescent dye. Laser light sheet illuminated a two-dimensional cross section of the jet. The intensity variations of LIF signal from Rhodamine B molecules scattered by the laser light were captured with an optical filter and a CCD camera. The spatial variations of temperature field of buoyant jet were derived using the calibration data between the LIF signal and real temperature. The measured results show that the turbulent jet is more efficient in mixing compared to the transition and laminar jet flows. As the initial flow condition varies from laminar to turbulent flow, the entrainment from ambient fluid increases and temperature decay along the jet center axis becomes larger. In addition to the mean temperature field, the spatial distributions of temperature fluctuations were measured by the PLIF technique and the result shows the shear layer development from the jet nozzle exit.

Simultaneous Measurements of Temperature and Velocity Fields of a Buoyant Jet Using LIE and PIV Techniques (LIE와 PIV 기법을 이용한 부력제트의 온도장과 속도장 동시측정)

  • Kim Seok;Jang Young Gil;Lee Sang Joon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.513-516
    • /
    • 2002
  • The flow structure and heat transfer characteristics of a turbulent buoyant jet were investigated experimentally. The instantaneous temperature and velocity fields in the near field were measured using a two-frame PIV and PLIF techniques. A thin light sheet illuminated a two-dimensional cross section of the buoyant jet in which Rhodamine B was added as a fluorescent dye. The intensity variations of LIF signal from Rhodamine B molecules scattered by the laser light were captured by a CCD camera after passing an optical filter. By ensemble averaging the instantaneous temperature and velocity fields, the mean temperature and velocity fields as well as the spatial distributions of turbulent statistics were obtained. The results show the flow structure and convective heat transfer of the developing shear layer in the near field.

  • PDF