A 4D light field image is represented in traditional 2D spatial domain and additional 2D angular domain. The 4D light field has a resolution limitation both in spatial and angular domains since 4D signals are captured by 2D CMOS sensor with limited resolution. In this paper, we propose a dictionary learning-based superresolution algorithm in 4D light field domain to overcome the resolution limitation. The proposed algorithm performs dictionary learning using a large number of extracted 4D light field patches. Then, a high resolution light field image is reconstructed from a low resolution input using the learned dictionary. In this paper, we reconstruct a 4D light field image to have double resolution both in spatial and angular domains. Experimental result shows that the proposed method outperforms the traditional method for the test images captured by a commercial light field camera, i.e. Lytro.
We propose a method to synthesize a color non-hogel-based computer-generated-hologram (CGH) from light field data of a three-dimensional scene with a hologram pixel pitch shared for all color channels. The non-hogel-based CGH technique generates a continuous wavefront with arbitrary carrier wave from given light field data by interpreting the ray angle in the light field to the spatial frequency of the plane wavefront. The relation between ray angle and spatial frequency is, however, dependent on the wavelength, which leads to different spatial frequency sampling grid in the light field data, resulting in color aberrations in the hologram reconstruction. The proposed method sets a hologram pixel pitch common to all color channels such that the smallest blue diffraction angle covers the field of view of the light field. Then a spatial frequency sampling grid common to all color channels is established by interpolating the light field with the spatial frequency range of the blue wavelength and the sampling interval of the red wavelength. The common hologram pixel pitch and light field spatial frequency sampling grid ensure the synthesis of a color hologram without any color aberrations in the hologram reconstructions, or any loss of information contained in the light field. The proposed method is successfully verified using color light field data of various test or natural 3D scenes.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2015.11a
/
pp.180-181
/
2015
In this paper, we present a consistent and efficient edit propagation method that is applied for light field data. Unlike conventional sparse edit propagation, the coherency between light field sub-aperture images is fully considered by utilizing light field consistency in the optimization framework. Instead of directly solving the optimization function on all light field sub-aperture images, the proposed optimization framework performs sparse edit propagation in the extended focus image domain. The extended focus image is the representative image that contains implicit depth information and the well-focused region of all sub-aperture images. The edit results in the extended focus image are then propagated back to each light field sub-aperture image. Experimental results on test images captured by a Lytro off-the-shelf light field camera confirm that the proposed method provides robust and consistent results of edited light field sub-aperture images.
We propose a method to suppress the speckle noise and blur effects of the light field extracted from a hologram using a deep-learning technique. The light field can be extracted by bandpass filtering in the hologram's frequency domain. The extracted light field has reduced spatial resolution owing to the limited passband size of the bandpass filter and the blurring that occurs when the object is far from the hologram plane and also contains speckle noise caused by the random phase distribution of the three-dimensional object surface. These limitations degrade the reconstruction quality of the hologram resynthesized using the extracted light field. In the proposed method, a deep-learning model based on a generative adversarial network is designed to suppress speckle noise and blurring, resulting in improved quality of the light field extracted from the hologram. The model is trained using pairs of original two-dimensional images and their corresponding light-field data extracted from the complex field generated by the images. Validation of the proposed method is performed using light-field data extracted from holograms of objects with single and multiple depths and mesh-based computer-generated holograms.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2015.07a
/
pp.497-498
/
2015
영상을 취득한 후 다양한 응용프로그램으로 확장이 가능한 4 차원 light field 영상은 일반적인 2 차원 공간 (spatial) 영역과 추가적인 2 차원 각 (angular) 영역으로 구성된다. 그러나 이러한 4 차원 light field 영상을 2 차원 CMOS 센서로 취득하므로 이에 따른 해상도 제약이 존재한다. 본 논문에서는 이러한 4 차원 light field 영상이 가지는 해상도 제약 조건을 해결하기 위하여, 4 차원 light field 영상에 적합한 학습 기반 (learning-based) 초해상도 (superresolution) 알고리즘을 제안한다. 제안하는 알고리즘은 공간영역 해상도 그리고 각영역의 해상도를 각각 2 배 향상시킨다. 실험에 사용되는 영상은 상용 light field 카메라인 Lytro 에서 취득하며, 기존의 선형 보간 기법인 bicubic 기법과의 비교를 통해 제안하는 기법의 우수성을 검증한다.
Rah, Hyungju;Lee, Seungmin;Ryu, Yeong Hwa;Park, Gayeon;Song, Seok Ho
Current Optics and Photonics
/
v.6
no.4
/
pp.375-380
/
2022
We demonstrate two types of light field displays based on waveguide grating coupler arrays: a line beam type and a point source type. Ultra violet imprinting of an array of diffractive nanograting cells on the top surface of a 50-㎛-thin slab waveguide can deliver a line beam or a point beam to a multidirectional light field out of the waveguide slab. By controlling the grating vectors of the nanograting cells, the waveguide modes are externally coupled to specific viewing angles to create a multidirectional light field display. Nanograting cells with periods of 300 nm-518 nm and slanted angles of -8.5°~+8.5° are fabricated by two-beam interference lithography on a 40 mm × 40 mm slab waveguide for seven different viewpoints. It is expected that it will be possible to realize a very thin and flexible panel that shows multidirectional light field images through the waveguide-type diffraction display.
Currently commercially available light field cameras are difficult to acquire 5D light field video since it can only acquire the still images or high price of the device. In order to solve these problems, we propose a deep learning based method for synthesizing the light field video from monocular video. To solve the problem of obtaining the light field video training data, we use UnrealCV to acquire synthetic light field data by realistic rendering of 3D graphic scene and use it for training. The proposed deep running framework synthesizes the light field video with each sub-aperture image (SAI) of $9{\times}9$ from the input monocular video. The proposed network consists of a network for predicting the appearance flow from the input image converted to the luminance image, and a network for predicting the optical flow between the adjacent light field video frames obtained from the appearance flow.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.10a
/
pp.109-111
/
2021
Recently, computer vision research using light field cameras has been actively conducted. Since light field cameras have spatial information, various studies are being conducted in fields such as depth map estimation, super resolution, and 3D object detection. In this paper, we propose a method for detecting objects in blur images through a 7×7 array of images acquired through a light field camera. The blur image, which is weak in the existing camera, is detected through the light field camera. The proposed method uses the SSD algorithm to evaluate the performance using blur images acquired from light field cameras.
Depth estimation is one of the most complicated and difficult problems to deal with in the light field. In this paper, a compound attention convolutional neural network (CAttNet) is proposed to extract depth maps from light field images. To make more effective use of the sub-aperture images (SAIs) of light field and reduce the redundancy in SAIs, we use a compound attention mechanism to weigh the channel and space of the feature map after extracting the primary features, so it can more efficiently select the required view and the important area within the view. We modified various layers of feature extraction to make it more efficient and useful to extract features without adding parameters. By exploring the characteristics of light field, we increased the network depth and optimized the network structure to reduce the adverse impact of this change. CAttNet can efficiently utilize different SAIs correlations and features to generate a high-quality light field depth map. The experimental results show that CAttNet has advantages in both accuracy and time.
Cha, Jae Deok;Lee, Jun Ho;Kim, Seo Hyun;Jung, Do Hwan;Kim, Young Soo;Jeong, Yumee
Current Optics and Photonics
/
v.6
no.3
/
pp.313-322
/
2022
Remote-sensing optical payloads, especially hyperspectral imagers, have particular issues with stray light because they often encounter high-contrast target/background conditions, such as sun glint. While developing an optical payload, we usually apply several stray-light analysis methods, including forward and backward analyses, separately or in combination, to support lens design and optomechanical design. In addition, we often characterize the stray-light response over a full field to support calibration, or when developing an algorithm to correct stray-light errors. For this purpose, we usually use forward analysis across the entire field, but this requires a tremendous amount of computational time. In this paper, we propose a sequence of forward-backward-forward analyses to more effectively investigate the through-field response of stray light, utilizing the combined advantages of the individual methods. The application is an airborne hyperspectral imager for creating hyperspectral maps from 900 to 1700 nm in a 5-nm-continuous band. With the proposed method, we have investigated the through-field response of stray light to an effective accuracy of 0.1°, while reducing computation time to 1/17th of that for a conventional, forward-only stray-light analysis.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.