• Title/Summary/Keyword: Light direction

Search Result 853, Processing Time 0.025 seconds

Method of Analyzing Important Variables using Machine Learning-based Golf Putting Direction Prediction Model (머신러닝 기반 골프 퍼팅 방향 예측 모델을 활용한 중요 변수 분석 방법론)

  • Kim, Yeon Ho;Cho, Seung Hyun;Jung, Hae Ryun;Lee, Ki Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • Objective: This study proposes a methodology to analyze important variables that have a significant impact on the putting direction prediction using a machine learning-based putting direction prediction model trained with IMU sensor data. Method: Putting data were collected using an IMU sensor measuring 12 variables from 6 adult males in their 20s at K University who had no golf experience. The data was preprocessed so that it could be applied to machine learning, and a model was built using five machine learning algorithms. Finally, by comparing the performance of the built models, the model with the highest performance was selected as the proposed model, and then 12 variables of the IMU sensor were applied one by one to analyze important variables affecting the learning performance. Results: As a result of comparing the performance of five machine learning algorithms (K-NN, Naive Bayes, Decision Tree, Random Forest, and Light GBM), the prediction accuracy of the Light GBM-based prediction model was higher than that of other algorithms. Using the Light GBM algorithm, which had excellent performance, an experiment was performed to rank the importance of variables that affect the direction prediction of the model. Conclusion: Among the five machine learning algorithms, the algorithm that best predicts the putting direction was the Light GBM algorithm. When the model predicted the putting direction, the variable that had the greatest influence was the left-right inclination (Roll).

2D/3D Convertible Integral Imaging Display Using Point Light Source Array Instrumented by Polarization Selective Scattering Film

  • Song, Byoungsub;Min, Sung-Wook
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.162-167
    • /
    • 2013
  • A two-dimensional (2D) / three-dimensional (3D) convertible display system based on integral imaging is proposed to adopt a novel switchable point light source array, which is implemented using the polarization modulator and the polarization selective scattering film that transmits or scatters the incident light due to its polarization direction. The 2D and the 3D display modes of the proposed system can be modulated by controlling the polarization direction of back light using the polarization modulator. We explain the basic principles of the proposed system and verify the feasibility of the system through preliminary experiments.

Interior Lighting Calculation using Monte-Carlo Method (몬테카를로법을 이용한 실내조도 계산)

  • Kim Hoon
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.6 no.5
    • /
    • pp.19-26
    • /
    • 1992
  • A computer program to calculate the illumination distributions of a room interior was made. The room has a light source with arbitrary intensity distribution. The program follows the paths of the particles from the light sources, and the illumination distribution is calculated by repeating this following to many particles. Monte Carlo method is applied to the decision of the direction of the particle from light source, and the new direction of the reflected particles. Making simulation program on this basis, illumination distributions were measured for various light sources and wall surfaces tocertify the calculated results. As a results, it is known that the calculated distribution would be correct if the size of the light source is sufficiently smaller than the size of the room.

  • PDF

A Study on the Angular Characteristics of Photopolymer-based Hologram Recording and Reproducing Light

  • Kwang-pyo, Hong;Jiwoon, Lee;Lee-hwan, Hwang;Soon-chul, Kwon;Seunghyun, Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.460-469
    • /
    • 2022
  • Increasing interest in the metaverse world these days, interest in realistic content such as 3D displays is growing. In particular, hologram images seen in movies provide viewers with an immersive display that cannot be seen in conventional 2D images. Since the first discovery of holography by Dennis Gabor in 1948, this technology has developed rapidly. Spatially, this beginning of technology like Optical hologram called analog hologram and Digital hologram such as computer-generated hologram (CGH). In analog and digital holograms, a recording angle and a recording wavelength are having important role when reproducing and display hologram. In the hologram, diffraction of light causes by unexpected formed by the synthesis from interference with object and reference light. When recording, the incident light information and mismatched reproduction light reconstruct the hologram in an undesirable direction. Reproduction light that is out of sync with incident light information with initial condition of recording will cause reconstructed image in an undesirable direction. Therefore, we analyze the holographic interference pattern generated by hologram recording in volume holograms using photopolymer and analyze the characteristics that vary depending on the angle of the reproduced light. This is expected to be used as a basic research on various holographic application that may cause as holograms are applied to industries in the future.

Robot Posture Estimation Using Circular Image of Inner-Pipe (원형관로 영상을 이용한 관로주행 로봇의 자세 추정)

  • Yoon, Ji-Sup;Kang , E-Sok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.6
    • /
    • pp.258-266
    • /
    • 2002
  • This paper proposes the methodology of the image processing algorithm that estimates the pose of the inner-pipe crawling robot. The inner-pipe crawling robot is usually equipped with a lighting device and a camera on its head for monitoring and inspection purpose of defects on the pipe wall and/or the maintenance operation. The proposed methodology is using these devices without introducing the extra sensors and is based on the fact that the position and the intensity of the reflected light from the inner wall of the pipe vary with the robot posture and the camera. The proposed algorithm is divided into two parts, estimating the translation and rotation angle of the camera, followed by the actual pose estimation of the robot . Based on the fact that the vanishing point of the reflected light moves into the opposite direction from the camera rotation, the camera rotation angle can be estimated. And, based on the fact that the most bright parts of the reflected light moves into the same direction with the camera translation, the camera position most bright parts of the reflected light moves into the same direction with the camera translation, the camera position can be obtained. To investigate the performance of the algorithm, the algorithm is applied to a sewage maintenance robot.

An Optical Configuration for Vertical Alignment Liquid Crystal cell with Wide Viewing Angle

  • Ji, Seung-Hoon;Lee, Gi-Dong
    • Journal of Information Display
    • /
    • v.9 no.2
    • /
    • pp.22-27
    • /
    • 2008
  • We propose an optical configuration of a vertical alignment (VA) liquid crystal (LC) cell to eliminate the light leakage in the diagonal direction. VA LC cell has an excellent contrast ratio in the normal direction due to the no phase-retardation. However, change of the phase-retardation occurs in all directions, which causes the light leakage and deteriorates the characteristics of the dark state. We designed the LC cell structure composed of multiple combinations with two A-plates and two C-plates in order to achieve wide viewing property on the Poincare sphere. From calculations, we show that the proposed structure can improve the viewing angle characteristics by compensating for the light leakage in all directions.

Photoresponsive Behavior of Liquid-Crystalline Networks

  • Yu, Yanlei;Ikeda, Tomiki;Nakano, Makoto
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.34-37
    • /
    • 2002
  • Freestanding azobenzene-containing liquidcrystalline network (LCN) films. with macroscopic uniaxial molecular alignment were prepared by insitu photopolymerization. By polarizing microscopy, fiber-like structures aligned in one direction were observed. Furthermore, with a confocal laser scanning microscope (CLSM), it was confirmed that the fiber-like structures were formed even in the bulk of the LCNs. Upon UV light irradiation to cause trans-cis photoisomerization of the azobenzene molecules, the LCNfilms underwent a significant and anisotropic bending toward the irradiation direction of UV light. When the bent LCNfilms were exposed to Vis light, unbending of the LCN films immediately took place and the initial flat LCN films were restored. This bending and unbending behavior of the LCN films could be repeated just by changing the wavelength of the irradiation light. It was suggested that the bending was induced by an absorption gradient which produced a volume difference between the front surface area and the bulk of the network films.

  • PDF

Holographic phase gratings in back- and frontlights for LCD's

  • Bastiaansen, C.W.M.;Heesch, C. van;Broer, D.J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.421-421
    • /
    • 2006
  • The light and energy-efficiency of classical liquid crystal displays is notoriously poor due to the use of absorption-based linear polarisers and colour filters. For instance, the light efficiency of PVAL polarisers is typically between 40 and 45 % and the colour filters have a typical efficiency below 35 % which results in a total light and energy-efficiency of the display below 10 %. In the past, a variety of polarizers were developed with an enhanced efficiency in generating linearly polarized light. Typically, these polarizers are based on the polarisationselective reflection, scattering or refraction of light i.e. one polarisation direction of light is directly transmitted to the LCD/viewer and the other polarization direction of light is depolarised and recycled which results in a typical efficiency for generating linearly polarized light of 70-85 %. Also, special colour filters have been proposed based on chiral-nematic reactive mesogens which increase the efficiency of generating colour. Despite the enormous progress in this field, a need persists for improved methods for generating polarized light and colour based on low cost optical components with a high efficiency. Here, the use of holographic phase gratings is reported for the generation of polarized light and colour. The phase grating are recorded in a photopolymer which is coated onto a backor frontlight for LCDs. Typically the recording is performed in the transmisson mode or in the waveguiding mode and slanted phase gratings are generated with their refractive index modulation at an angle between 20o and 45o with the normal of the substrate. It is shown that phase gratings with a high refractive index modulation and a high efficiency can be generated by a proper selection of the photopolymer and illumination conditions. These phase gratings coupleout linearly polarized light with a high contrast (> 100) and the light is directed directly to the LCD/viewer without the need for redirection foils. Dependent on the type of phase grating, the different colours are coupled-out at a slightly different angle which potentially increases the efficiency of classical colour filters. Moreover, the phase gratings are completely transparent in direct view which opens the possibility to use them in frontlights for LCDs. Holographic polarization gratings posses a periodic pattern in the polarization state of light (and not in the intensity of light). A periodic pattern in the polarization direction of linearly polarized light is obtained upon interference of two circularly polarized laser beams. In the second part of the lecture, it is shown that these periodic polarization patterns can be recorded in a linear photo-polymerizable polymer (LPP) and that such an alignment layer induces a period rotation in the director of (reactive and non-reactive) liquid crystals. By a proper design, optical components can be produced with only first order diffraction and with a very high efficiency (>0.98). It is shown that these diffraction gratings are potentially useful in projection displays with a high brightness and energy efficiency

  • PDF

THE PHOTO-MECHANICAL RESPONSES IN THE UNICELLULAR CILIATES

  • Song, Pill-Soon
    • Journal of Photoscience
    • /
    • v.2 no.1
    • /
    • pp.31-35
    • /
    • 1995
  • Light signals in the form of intensity gradient, propagation direction, and wavelength elicit diverse mechanical responses ("photomechanical responese") in most organisms. The single cell ciliates, Stentor coeruleus and Blepharisma japonicum, are particularly sensitive to the light of visible wavelengths. In this paper, the way in which the seemingly sophisticated light signal transduction is triggered by the photosensory apparatus will be described in terms of the photoreceptor structure and photochemical function.

  • PDF

Image Analysis for the Simultaneous Measurement of Underwater Flow Velocity and Direction (수중 유속 및 유향의 동시 측정을 위한 이미지 분석 기술에 관한 연구)

  • Dongmin Seo;Sangwoo Oh;Sung-Hoon Byun
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.307-312
    • /
    • 2023
  • To measure the flow velocity and direction in the near field of an unmanned underwater vehicle, an optical measurement unit containing an image sensor and a phosphor-integrated pillar that mimics the neuromasts of a fish was constructed. To analyze pillar movement, which changes with fluid flow, fluorescence image analysis was conducted. To analyze the flow velocity, mean force analysis, which could determine the relationship between the light intensity of a fluorescence image and an external force, and length-force analysis, which could determine the distance between the center points of two fluorescence images, were employed. Additionally, angle analysis that can determine the angles at which pixels of a digital image change was selected to analyze the direction of fluid flow. The flow velocity analysis results showed a high correlation of 0.977 between the external force and the light intensity of the fluorescence image, and in the case of direction analysis, omnidirectional movement could be analyzed. Through this study, we confirmed the effectiveness of optical flow sensors equipped with phosphor-integrated pillars.