• Title/Summary/Keyword: Light curing time

Search Result 148, Processing Time 0.026 seconds

A STUDY ON THE CHANGES IN DEGREE OF CONVERSION OF DUAL-CURE RESTORATIVE MATERIALS WITH TIME-ELAPSE (이중중합 수복재의 시간경과에 따른 중합도 변화)

  • Yang, Chul-Ho;Kim, Shin;Jeong, Tae-Sung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.3
    • /
    • pp.554-563
    • /
    • 1999
  • For the purpose of elucidating the polymerization modes of dual-cure restorative materials and comparing them with single-cure restorative materials, a study was performed on the light-cured composite resin, dual-cure composite resin, dual-cure glass ionomer cement and chemical-cure glass ionomer cement. By measuring the microhardness of each material at 0mm, 1mm and 3mm depth during initial 24 hours with predetermined interval, the state of polymerization and degree of conversion was indirectly evaluated for each material, and obtained results are as follows : 1. All of four materials tested showed significant increase in microhardness after 24hrs compared with just after curing starts. 2. In all materials except Ketac-fil, there showed a significant difference in microhardness between each depth at each time interval. 3. In the test of lap time till final curing for each material, the polymerization process was revealed to last longer in the dual-cure type materials than in single-cure type materials at 3mm depth. Based on the results above, it was demonstrated with materials of dual-cure mode that the degree of conversion increases by successive curing reactions even in the deeper layers where sufficient curing light is impermeable.

  • PDF

DEVELOPMENT OF OPTICAL CARIES ACTIVITY TEST USING DENTAL CURING LIGHT (광중합기를 이용한 광학적 치아우식활성도 검사법)

  • Lee, Nan-Young;Kim, Mi-Ra;Oh, You-Hyang;Lee, Chang-Seop;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.4
    • /
    • pp.671-679
    • /
    • 2004
  • The purpose of this study was to develop a practical caries activity test by fluorescence using laser, plasma light and halogen light. The subjects of study were 45 children of 7-8 years old Argon laser, plasma light and halogen light were irradiated to buccal or labial surface of all teeth. Fluorescence of initial carious lesion from teeth was observed through barrier filter and the number of teeth showing lesion was counted. Visual examination for the dDfFtT, mutans streptococci screening test and Lactobacilli colony counting were also done. Data analysis was accomplished by Axelsson's method. The result from the present study can be summarized as follows. 1. Laser, plasma light and halogen light could detect the initial carious lesions better than visual examination(p<0.05). 2. There was positive correlation between laser(r=0.42), plasma light(r=0.41), halogen light(r=0.39) and dBfFtT rate(p<0.01). 3. The specificity sensitivity and predictive value was showed highest value in laser, but was showed favorable value in plasma light and halogen light. In regard to above results, laser, plasma light and halogen light all considered to be reliable method for determining individual caries activity. And they were also considered to be practical method because it would be simple, inexpensive, and time saving method.

  • PDF

POLYMERIZATION SHRINKAGE OF COMPOSITE RESIN USING DOUBLE CURING UNIT SYSTEM (Double curing unit system을 이용한 복합 레진의 광중합 수축에 관한 연구)

  • Han, Mi-Ran;Kim, Jong-Soo;Yoo, Seung-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.36 no.2
    • /
    • pp.189-198
    • /
    • 2009
  • As a part of an effort to minimize the polymerization shrinkage which is considered to be a major cause of failed bonds to tooth, newly designed 'Double LED system' was tested in the present study. Analyses were performed on the pattern of micro-leakage and the changes of strain which have occurred during the polymerization process. The results can be summarized as follows: 1. In the strain change, dramatic increase was observed with initiation of polymerization which was followed by subsequent gradual decrease with elapse of time in both the single LED system and double LED system. 2. The single LED system were shown to develop and maintain the maximum stress more than double LED system(p<0.05). 3. Less micro-leakage was found in the double LED system than in the single LED system(p<0.05). From the above-mentioned results, the double LED system can be a very useful tool in a sense of reducing polymerization shrinkage when compared to the single LED system. However, practical problems such as size of curing unit and its application method with its light intensity should be solved before its clinical application.

  • PDF

THE EFFECT OF TEMPERATURE CHANGES ON THE PHYSICAL PROPERTIES OF POSTERIOR COMPOSITE RESINS (구치부용 복합 레진 가열시 물리적 성질의 변화에 관한 실험적 연구)

  • Park, Yeon-Hong;Min, Byung-Soon;Choi, Ho-Young;Park, Sung-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.14 no.1
    • /
    • pp.41-56
    • /
    • 1989
  • The purpose of this study was to examine the effect of temperature dependence of the behavior on the physical properties of posterior composite resins. Three light cure posterior composite resins (Heliomolar, Litefil-P, and P-50) and one chemical cure posterior composite resin (Bisfil-II) were used as experimental materials. Composite resin was placed in a cylindrical brass mold (2.5 mm high and 6.5 mm inside diameter) that was rested on a glass plate. Another flat glass was placed on top of the mold, and the plate was tightly clamped together. After the mold had been filled with the light cure composite material, the top surface was cured for 30 seconds with a light source. Chemical cure resin specimens were made in the same manner as above. Three hundreds and twenty composite resin specimens were constructed from the four composite materials. One hundred and sixty specimens of them were placed in a heater at $50^{\circ}C$, $75^{\circ}C$, $100^{\circ}C$, $125^{\circ}C$, $150^{\circ}C$, $175^{\circ}C$ and $200^{\circ}C$ for 5 minutes or 10 minutes respectively before compressive strengths were measured. Another one hundred and sixty specimens were tested for the diametral tensile strengths in the same way as above. They were randomly divided into eight groups according to the mode of heating methods as follows and stored in distilled water at $37^{\circ}C$ for 24 hours. Group $37^{\circ}C$ - specimens were stored at $37^{\circ}C$ in distilled water for 24 hours. Group $50^{\circ}C$ - specimens were heated at $50^{\circ}C$ after curing. Group $75^{\circ}C$ - specimens were heated at $75^{\circ}C$ after curing. Group $100^{\circ}C$ - specimens were heated at $100^{\circ}C$ after curing. Group $125^{\circ}C$ - specimens were heated at $125^{\circ}C$ after curing. Group $150^{\circ}C$ - specimens were heated at $150^{\circ}C$ after curing. Group $175^{\circ}C$ - specimens were heated at $175^{\circ}C$ after curing. Group $200^{\circ}C$ - specimens were heated at $200^{\circ}C$ after curing. Twenty specimens of each of four composite resins were respectively made by insertion of materials into same mold for examining the dimensional changes between before and after heating. The final eighty specimens were stored in distilled water at $37^{\circ}C$ for 24 hours before testing the dimensional changes. Compressive and diametral tensile strengths were measured crosshead speed 1mm/minute and 500Kg in full scale with a mechanical testing machine (DLC 500 Type, Shimadzu Co., Japan). Dimensional changes were determined by measuring the diametral changes of eighty specimens with micrometer (Mitutoyo Co., Japan). Results were as follows: 1. Diametral tensile strengths of specimens in all groups were increased with time heated compared with control group except for that in group $50^{\circ}C$ and the maximum diametral tensile strength was appeared in the specimen of Litefil-P heated for 10 minutes at $100^{\circ}C$. In heliomolar and P-50, it could be seen in the specimen heated for 10 minutes at $150^{\circ}C$, but in Bisfil-II, it could be found in the specimen heated for 5 minutes at $150^{\circ}C$. 2. Compressive strengths of specimens in all groups was tended to be also increased with time heated but that in group $50^{\circ}C$ and the maximum compressive strengths were showed in the same specimens conditioned as the diametral tensile strengths of four composite materials tested. 3. In Heliomolar, Litefil-P, and Bisfil-II, it was decreased in diameters of resin specimens between before heating and increased in diameters of resin specimens after storing in distilled water, but it was not in P-50. 4. There is little difference in diametral tensile strengths, compressive strengths, and dimensional changes followed by heating the resin specimens for 5 minutes and 10 minutes, but there is no statistical significances.

  • PDF

A STUDY ON THE MARGINAL LEAKAGE OF CLASS II COMPOSITE RESIN INLAY (2급 와동 복합레진 인레이 충전 후 변연누출에 관한 연구)

  • Kang, Hyun-Sook;Choi, Ho-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.17 no.1
    • /
    • pp.191-205
    • /
    • 1992
  • The purpose of this study was to evaluate the microleakage of class II composite resin inlays and compare them with the conventional light-cured resin filling restorations. Class II cavities were prepared in 60 extracted human molars with which cervical margins were located below 1.0mm at the cemento-enamel junction using No. 701 tapered fissure carbide bur. All of the prepared cavities were restored as follows and divided into 6 groups. Group I and 2 were restored using direct filling technique and group 3,4,5 and 6 were restored using direct inlay technique that was cemented with dual-cured resin cements. group I: Cavities were restored with light-curing composite resin, Brilliant Lux. group 2. Cavities were restored with light-curing composite resin, Clearfil PhotoPosterior. group 3: Cavities were restored with Clearfil CR Inlay and heat treated at $125^{\circ}C$ for 7 minutes. group 4: Cavities were restored with same material as group 3 and heat treated at $100^{\circ}C$ for 15 minutes. group 5: Cavities were restored with Brilliant (Indirect esthetic system) and heat treated at $125^{\circ}C$ for 7 minutes. group 6: Cavities were restored with same material as group 5 and heat treated at $100^{\circ}C$ for 15 minutes. All specimens were polished with same method and thermocycled between $6^{\circ}C$ and $60^{\circ}C$, then immersed in a bath of 2.0% aqueous solution of basic fuchsin dye for 24 hours. Dyed specimens were sectioned longitudinally and dye penetration degree was read on a scale of 0 to 4 by Tani and Buonocore's method 45). The results were as follows: 1. Microleakage was observed rather at the cervical margins than at the occlusal margins in all groups. 2. Composite resin inlay groups showed significantly less leakage than direct filling groups at the cervical margins (p < 0.001). 3. In composite resin inlay groups, there was no significant difference in microleakage between specimens by heat treating temperature and time (p > 0.05). 4. There was no significant difference in leakage between each groups at the occlusal margins (p > 0.05).

  • PDF

Effect of curing modes on micro-hardness of dual-cure resin cements (중합방법이 이중중합 레진시멘트의 미세경도에 미치는 영향)

  • Lee, Ki-Deok;Park, Se-Hee;Kim, Jin-Woo;Cho, Kyung-Mo
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.2
    • /
    • pp.132-138
    • /
    • 2011
  • Objectives: The purpose of this study was to evaluate curing degree of three dual-cure resin cements with the elapsed time in self-cure and dual-cure mode by means of the repeated measure of micro-hardness. Materials and Methods: Two dual-cure self-adhesive resin cements studied were Maxcem Elite (Kerr), Rely-X Unicem (3M ESPE) and one conventional dual-cure resin cement was Rely-X ARC resin cement (3M ESPE). Twenty specimens for each cements were made in Teflon mould and divided equally by self-cure and dual-cure mode and left in dark, $36^{\circ}C$, 100% relative humidity conditional-micro-hardness was measured at 10 min, 30 min, 1 hr, 3 hr, 6 hr, 12 hr and 24 hr after baseline. The results of micro-hardness value were statistically analyzed using independent samples t-test and one-way ANOVA with multiple comparisons using Scheffe's test. Results: The micro-hardness values were increased with time in every test groups. Dual-cure mode obtained higher micro-hardness value than self-cure mode except after one hour of Maxcem. Self-cured Rely-X Unicem showed lowest value and dual-cured Rely-X Unicem showed highest value in every measuring time. Conclusions: Sufficient light curing to dual-cure resin cements should provided for achieve maximum curing.

A STUDY ON THE TENSILE BOND STRENGTH BETWEEN VARIOUS RESIN TRAY MATERIALS AND RUBBER IMPRESSION MATERIALS (수종의 트레이 레진과 고무 인상재간의 인장 접착강도에 관한 연구)

  • Song Kyung-Won;Lim Ju-Hwan;Cho In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.4
    • /
    • pp.351-365
    • /
    • 2001
  • For accurate impression taking, accurate impression material, solid individual tray, and bond strength between impression materials and resin tray are important factors. The purpose of this study was to evaluate tensile bond strength of rubber impression materials to various tray resin materials. This study tested the time dependent tensile bond strength between commercial brands or poly ether, polysulfide, additional silicone impression materials and commercial brands of self curing tray resin. light activited tray resin when applying adhesive Resin specimens were made with 20mm in diameter, 2mm in thickness. 1 made total 360 specimens, 10 per each group and the tensile bond strength was measured by using the Instron($M100EC^{(R)}$, Mecmesin Co., England). The results were as follows ; Comparisons of various impression materials. 1. In case of Impregum $F^{(R)}$, the bond strength of tray resin was decreased in order of SR $Ivolen^{(R)}$, Ostron $100^{(R)}$ Instant tray $mix^{(R)}$, $Lightplast^{(R)}$. All groups excluding Ostron $100^{(R)}$, Instant tray $mix^{(R)}$ are significant difference (p<0.05). Drying time after applying adhesive, the tensile bond strength of tray resin was insignificantly decreased in order of 10 min drying time group. 1 min drying time group. 5 min drying time group. 2. In case of Permlastic $regular^{(R)}$ the bond strength of tray resin was insignificantly decreased in order of Ostron $100^{(R)}$. SR $Ivolen^{(R)}$, Instant tray $mix^{(R)}$ $Lightplast^{(R)}$. About drying time after applying adhesive, the tensile bond strength of tray resin was significantly decreased in order of 5 min drying time group, 10 min drying time group, 1 min drying time group(p<0.05). 3. In case of Exaflex $regular^{(R)}$. the bond strength of tray resin was decreased in order of $Lightplast^{(R)}$, SR $Ivolen^{(R)}$, Instant tray $mix^{(R)}$, Ostron $100^{(R)}$. $Lightplast^{(R)}$ was significant difference(p<0.05). About drying time after applying adhesive, the tensile bond strength of tray resin was decreased in order of 5 min drying time group, 10 min drying time group, 1 min drying time group(p<0.05). Especially 5 min ding time group was significant difference(p<0.05). According to the results of this study, we can see the greatest tensile bond strength when using Impregrm $F^{(R)}$ and Permlastic $regular^{(R)}$ with self curing tray resin, when using Exaflex $regular^{(R)}$ with light activated tray resin In my opinion, adhesive should be dried more than 5 min before impression taking to achieve the greatest tensile bond strength.

  • PDF

Photopolymerization efficiency of dental resin composites with solid amine photoinitiators (고체 amine 광개시제에 따른 치과용 복합수지의 중합효율)

  • Sun, Gum-Ju
    • Journal of Technologic Dentistry
    • /
    • v.28 no.1
    • /
    • pp.43-52
    • /
    • 2006
  • Three t-amines, 4-(dimethylamino)benzoic acid (ABA), 4-(dimethylamino)benzaldehyde (MBA), 4-(dimethylamino)benzophenone (MBP), were investigated as new visible light photoinitiators for a dental resin composite of UDMA in order to improve photopolymerization effect. Three t-amines mixed with three photosensiizers, CQ, PD and DA, respectively. And the photopolymerization effect of photoinitiators were compared with that of 4-(dimethylamino)ethyl methacrylate (AEM), the most widely used photoinitiator. The photopolymerization efficiency of UDMA containing the photoinitiator increased with irradiation time. The increase was in the order: MBP

  • PDF

Study on the MTTF of Multi Wave Lengths IR and NIR LEDs Module (다파장 IR과 NIR 모듈의 평균 수명 예측에 관한 연구)

  • Kim, Dong Pyo;Kim, Kyung Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.44-49
    • /
    • 2021
  • Recently, infrared (IR) and near-infrared (NIR) light-emitting diodes (LEDs) were widely used for home medical applications owing to its low output power and wide exposed area for curing. For deep penetration of the light under the skin, multiple LEDs with wavelengths of 700~10,000 nm were located on a flexible printed circuit board. When multiple wavelengths of LEDs were soldered on a circuit board, the lifetime of LED module highly depends on LEDs with a short lifetime. The mean time to failure (MTTF) was able to calculate with the experimental results under high temperature and the Arrhenius model. The results of this study could help companies to approve the warranty of LED modules and its product.

EFFECT OF INTERMITTENT POLYMERIZATION ON THE RATE OF POLYMERIZATION SHRINKAGE AND CUSPAL DEFLECTION IN COMPOSITE RESIN (복합 레진의 간헐적 광중합 방법이 중합 수축 속도와 치아의 교두 변위에 미치는 영향)

  • Kim, Min-Kyung;Park, Sung-Ho;Seo, Deog-Gyu;Song, Yun-Jung;Lee, Yoon;Lee, Chan-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.4
    • /
    • pp.341-351
    • /
    • 2008
  • This study investigated the effect of intermittent polymerization on the rate of polymerization shrinkage and cuspal deflection in composite resins. The linear polymerization shrinkage of each composite was measured using the custom-made linometer along with the light shutter specially devised to block the light at the previously determined interval. Samples were divided into 4 groups by light curing method; Group 1) continuous light (60s with light on); Group 2) intermittent light (cycles of 3s with 2s light on & 1s with light off for 90s): Group 3) intermittent light (cycles of 2s with 1s light on & 1s with light off for 120s); Group 4) intermittent light (cycles of 3s with 1s light on & 2s with light off for 180s). The amount of linear polymerization shrinkage was measured and its maximum rate (Rmax) and peak time (PT) in the first 15 seconds were calculated. For the measurement of cuspal deflection of teeth, MOD cavities were prepared in 10 extracted maxillary premolars. Reduction in the intercuspal distance was measured by the custom-made cuspal deflection measuring machine. ANOVA analysis was used for the comparison of the light curing groups and t-test was used to determine significant difference between the composite resins. Pyramid showed the greater amount of polymerization shrinkage than Heliomolar (p < 0.05). There was no significant difference in the linear polymerization shrinkage among the groups. The Rmax was group 4 < 3, 2 < 1 in Heliomolar and group 3 < 4 < 2, 1 in Pyramid (p < 0.05). Pyramid demonstrated greater cuspal deflection than Heliomolar. The cuspal deflection in Heliomolar was group 4 < 3 < 2, 1 and group 4, 3 < 2, 1 in Pyramid (p < 0.05). It was concluded that the reduced rate of polymerization shrinkage by intermittent polymerization can help to decrease the cuspal deflection.