• Title/Summary/Keyword: Light Wavelength

Search Result 1,424, Processing Time 0.031 seconds

Gigabit Ethemet Upstream Transmission over WDM-PON Employing Remotely Wavelength-Locked Fabry-Perot Lasers (WDM-PON에서 원격으로 파장 고정된 Fabry-Perot 레이저를 사용한 Gigabit Ethernet 상향 신호 전송)

  • Kim Hyun Deok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.12 s.91
    • /
    • pp.1207-1215
    • /
    • 2004
  • A Gigabit Ethernet upstream transmission over a WDM-PON employing remotely wavelength-locked Fabry-Perot lasers has been demonstrated. We have successfully demonstrated a WDM transmission of four Gigabit Ethernet channels with 100 GHz channel spacing over 30 km conventional single mode fiber. The measured f-factor was larger than 17.1 dB. We have also investigated the beating noise characteristics of a wavelength-locked Fabry-Perot laser and showed the remotely wavelength-locked Fabry-Perot laser suppresses the intensity noise of the incoherent light injected, which cause a 6.3 dB SNR improvement compared with that of the conventional spectrum-sliced light source.

Oil Spill Detection Mechanism using Single-wavelength LED and CCD (단일 파장의 LED와 CCD를 이용한 유출유 탐지방법)

  • Oh, Sangwoo;Lee, Moonjin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.4
    • /
    • pp.323-329
    • /
    • 2012
  • In this study, a new optical method for oil detection using an analysis the light-absorption image of separate oil-water mixture with a LED illumination is described. To obtain an information about the presence of oil on water and the thickness of oil, the intensity of light-absorption images acquired through CCD is analyzed. To select the optimal wavelength of the light source, the experiment is conducted using several LEDs having four different wavelength. In the case of using a blue LED having 465 nm wavelength, an intensity decreasing tendency of light-absorption image is obvious and clear. To identify the applicability of sensing system at the real sea condition, experiments are conducted as varying the brightness and water surface angle. Through this research, new optical oil detection methodology is proposed using the absorption difference between water and oil with single-wavelength LED and CCD.

Characterization of Wavelength Effect on Photovoltaic Property of Poly-Si Solar Cell Using Photoconductive Atomic Force Microscopy (PC-AFM)

  • Heo, Jinhee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.3
    • /
    • pp.160-163
    • /
    • 2013
  • We investigated the effect of light intensity and wavelength of a solar cell device by using photoconductive atomic force microscopy (PC-AFM). The $POCl_3$ diffusion doping process was used to produce a p-n junction solar cell device based on a Poly-Si wafer and the electrical properties of prepared solar cells were measured using a solar cell simulator system. The measured open circuit voltage ($V_{oc}$) is 0.59 V and the short circuit current ($I_{sc}$) is 48.5 mA. Also, the values of the fill factors and efficiencies of the devices are 0.7% and approximately 13.6%, respectively. In addition, PC-AFM, a recent notable method for nano-scale characterization of photovoltaic elements, was used for direct measurements of photoelectric characteristics in local instead of large areas. The effects of changes in the intensity and wavelength of light shining on the element on the photoelectric characteristics were observed. Results obtained through PC-AFM were compared with the electric/optical characteristics data obtained through a solar simulator. The voltage ($V_{PC-AFM}$) at which the current was 0 A in the I-V characteristic curves increased sharply up to 1.8 $mW/cm^2$, peaking and slowly falling as light intensity increased. Here, $V_{PC-AFM}$ at 1.8 $mW/cm^2$ was 0.29 V, which corresponds to 59% of the average $V_{oc}$ value, as measured with the solar simulator. Also, while light wavelength was increased from 300 nm to 1,100 nm, the external quantum efficiency (EQE) and results from PC-AFM showed similar trends at the macro scale, but returned different results in several sections, indicating the need for detailed analysis and improvement in the future.

Blue-Light Hazards of 405 nm Sterilization LED Lamps (405 nm 살균용 UV LED 등기구의 청색광 위해에 관한 연구)

  • Hyeon-seok Heo;Chung-hyeok Kim;Ki-ho Nam;Jin-sa Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.3
    • /
    • pp.266-274
    • /
    • 2023
  • Recently, sterilization technology has received increasing interest due to the COVID-19 pandemic and required safety precautions. Particularly, sterilization devices using near ultraviolet (UV) with a 405 nm wavelength are also drawing attention. It has a UV-C wavelength and other sterilization effects. Its blue-colored light on the boundary between UV and visible light is used as a light-emitting diode (LED) lamp for 405 nm sterilization, owing to its longer wavelengths than UV rays. However, the 405 nm wavelength contains blue light that can damage the eyes and skin during prolonged exposures and affect the emotional and biological parts of the body. Currently, 405 nm sterilization LED light registers are circulating in the market. However, they have not undergone safety tests for blue-light hazards. Thus, with the active distribution of sterilization LED lights, solid safety standards and management systems are essential to protect users from blue-light hazards. Accordingly, in this study, we conducted spectral radiance and spectral radiative luminance tests on 405 nm sterilization LED registers available in the market by the measurement criteria of IEC 62471. Safety standards must be established to secure users' safety against blue light hazards at a time when 405nm sterilization LED lights are actively distributed due to COVID-19.

Growth and Anthocyanins of Lettuce Grown under Red or Blue Light-emitting Diodes with Distinct Peak Wavelength (상이한 피크파장의 적색광 및 청색광 발광다이오드 조사에 따른 상추의 생장 및 안토시아닌)

  • Lee, Jae Su;Kim, Yong Hyeon
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.330-339
    • /
    • 2014
  • Growth and anthocyanins of lettuce (Lactuca sativa L., 'Mid-season') grown under LED lamps with blue light in the range of 430-470 nm or with red light in the range of 630-670 nm were analyzed in this study. Cool-white fluorescent light was used a s the control. P hotosynthetic photon flux, p hotoperiod, air temperature, relative humidity, and $CO_2$ concentration in a closed plant production system were $201{\pm}2\;{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, 16/8 hours (day/night), $22/18^{\circ}C$, 70%, and $400{\mu}mol{\cdot}mol^{-1}$, respectively. At 21 days after light quality treatment, growth characteristics and anthocyanins content of lettuce as affected by the peak wavelength of blue or red LED were significantly different. Among peak wavelengths treated in this stusy, R1 treatment (peak wavelength 634 nm) and R6 treatment (peak wavelength 659 nm) were effective for increasing leaf width, leaf area, shoot fresh weight, and photosynthetic rate of lettuce. B5 treatment (peak wavelength 450 nm) and B4 treatment (peak wavelength 446 nm) increased the anthocyanins concentration and chlorophyll content in lettuce leaves, respectively. Anthocyanins in lettuce leaves increased linearly with decreasing hue value of leaf color and with increasing SPAD value of lettuce leaves. From these results, it was concluded that the red LED with peak wavelengths of 634 nm and 659 nm and the blue LED with peak wavelengths of 450 nm can be used as potential light spectra for increasing the yield and anthocyanins accumulation of leafy vegetable.

Characterization of Light Effect on Photovoltaic Property of Poly-Si Solar Cell by Using Photoconductive Atomic Force Microscopy (Photoconductive Atomic Force Microscopy를 이용한 빛의 세기 및 파장의 변화에 따른 폴리실리콘 태양전지의 광전특성 분석)

  • Heo, Jinhee
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.680-684
    • /
    • 2018
  • We investigate the effect of light intensity and wavelength of a solar cell device using photoconductive atomic force microscopy(PC-AFM). A $POCl_3$ diffusion doping process is used to produce a p-n junction solar cell device based on a polySi wafer, and the electrical properties of prepared solar cells are measured using a solar cell simulator system. The measured open circuit voltage($V_{oc}$) is 0.59 V and the short circuit current($I_{sc}$) is 48.5 mA. Moreover, the values of the fill factors and efficiencies of the devices are 0.7 and approximately 13.6 %, respectively. In addition, PC-AFM, a recent notable method for nano-scale characterization of photovoltaic elements, is used for direct measurements of photoelectric characteristics in limited areas instead of large areas. The effects of changes in the intensity and wavelength of light shining on the element on the photoelectric characteristics are observed. Results obtained through PC-AFM are compared with the electric/optical characteristics data obtained through a solar simulator. The voltage($V_{PC-AFM}$) at which the current is 0 A in the I-V characteristic curves increases sharply up to $18W/m^2$, peaking and slowly falling as light intensity increases. Here, $V_{PC-AFM}$ at $18W/m^2$ is 0.29 V, which corresponds to 59 % of the average $V_{oc}$ value, as measured with the solar simulator. Furthermore, while the light wavelength increases from 300 nm to 1,100 nm, the external quantum efficiency(EQE) and results from PC-AFM show similar trends at the macro scale but reveal different results in several sections, indicating the need for detailed analysis and improvement in the future.

Optimization of the Emission Spectrum of Red Color in Quantum Dot-Organic Light Emitting Diodes

  • Jeong, Byoung-Seong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.214-218
    • /
    • 2021
  • We investigated the optimal stacked structure from the perspective of process architecture (PA) through emission spectrum analysis according to the wavelength of quantum dot (QD)-organic light-emitting diodes (OLED). We confirmed that the blue-light leakage through the QD can be minimized by increasing the QD filling density above a critical value in the red QD (R-QD) layer. In addition, when the thickness of red-color filter (R-CF) at the upper part of the R-QD increased to more than 3 ㎛, the leakage of blue light through the R-CF was effectively blocked, and a very sharp emission spectrum in the red wavelength band could be obtained. According to these outstanding results, we expect that the development of QD-OLED displays with very excellent color gamut can be possibly realized.

A Study on the Fabrication and Characteristic Analysis of Multiheterostructure White Organic Light Emitting Device (다층구조 배색 유기발전소자의 제작 및 특성 분석에 관한 연구)

  • 노병규;강명구;오환술
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.5
    • /
    • pp.429-434
    • /
    • 2002
  • In this paper, multiheterostructure white organic light-emitting device was fabricated by vacuum evaporation. The structure of white organic light-emitting device is ITO/CuPc/TPD/DPBi:DPA/$Alq_3/Alq_3$:DCJTB/BCT/$Alq_3$/Ca/Al. Three primary colors are implemented with DPVBi, Alq$_3$and DCJTB. The maximum EL wavelength of the fabricated white organic light-emitting device is 647nm. And the CIE coordinate is (0.33, 0.33) at 13 V. In the fabrication of white organic light-emitting devices with DCJTB, $Alq_3$, DPVBi, the EL spectrum has two peaks at 492nm, 647nm. Two peaks appeared because the blue light is combined with green light. The maximum wavelength of red light is not changed with applied voltage. After voltage applied, for the first time, the electrons met the holes in the red emission layer and emitted red light. And then the electrons moved to the green emission layer, and blue emission layer continuously. Finally, when all of the emission layer activated, the white light is emitted.

Ultraviolet Light Sensor Based on an Azobenzene-polymer-capped Optical-fiber End

  • Cho, Hee-Taek;Seo, Gyeong-Seo;Lim, Ok-Rak;Shin, Woojin;Jang, Hee-Jin;Ahn, Tae-Jung
    • Current Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.303-307
    • /
    • 2018
  • We propose a simple ultraviolet (UV) sensor consisting of a conventional single-mode optical fiber capped with an azobenzene-moiety-containing polymer. The UV light changes the dimensions of the azobenzene polymer, as well as the refractive index of the material. Incident light with a wavelength of 1550 nm was reflected at the fiber/polymer and polymer/air interfaces, and interference of the reflected beams resulted in spectral interference that shifted the wavelength by 0.78 nm at a UV input power of $2.5mW/cm^2$. The UV sensor's response to wavelength is nonlinear and stable. The response speed of the sensor is limited by detection noise, which can be improved by modifying the insertion loss of the UV sensor and the signal-to-noise ratio of the detection system. The proposed compact UV sensor is easy to fabricate, is not susceptible to electromagnetic interference, and only reacts to UV light.

Effects of Light on the Pigment Production and Chloroplast Development of Ginseng Hairy Roots (인삼 모상근의 색소 생성 및 엽록체 발달에 미치는 광의 효과)

  • 양덕조;최혜연
    • Journal of Ginseng Research
    • /
    • v.21 no.1
    • /
    • pp.28-34
    • /
    • 1997
  • The effects of light on the pigment production and chloroplast development were examined on ginseng hairy roots cultured in 1/2MS liquid medium. The chlorophyll and carotenoid production were increased from 1,000 to 3,500 lux condition, but decreased drastically in 7,000 lux condition. The anthocyanin production was significantly increased with increment light intensity(1,000∼7,000 lux). The thylakoid membrane of chloroplast was proplastid in dark condition and it began to develop into thylakoid membrane in 1,000 lux condition and then intact thylakoid membrane was developed in 3,500 lux condition. However, the development of thylakoid membrane in 7,000 lux condition was inhibited comparing to 3,500 lux condition. The total chlorophyll production in blue light condition were high comparing to other wavelength and same as 40% of total chlorophyll on white light(3,500 lux) condition. The chlorophyll and carotenoid production by sucrose concentration were high in 3% sucrose condition and anthocyanin production was high in 4% condition. The production of chlorophyll and carotenoid by light periods was high when explants were cultured in dark condition for 1 week and then transferred to light condition for 4 weeks. Our results suggest that pigment production and chloroplast development could be accelerated by light Intensity of specific wavelength in cultures of ginseng hairy root.

  • PDF