• Title/Summary/Keyword: Light Intensity Distribution

Search Result 257, Processing Time 0.021 seconds

Construction of a Distribution Photometer System for Automobile Light Sources (자동차용 광원의 광도분포 측정장치(배광측정기)제작)

  • 김용완;김홍기;이인원;이완순;이상원
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.10 no.4
    • /
    • pp.53-61
    • /
    • 1996
  • A distribution photometer was constructed to measure the angular distribution of luminous intensity of light sources and the reflected luminance of retroreflectors. This system incorporates a goniometer to rotate test light source(360 degree in yaw rotation and $\pm$30 degree in pictch rotation), a photomultiplier tube as light detector, light projector for retroreflection measurements, and the control and display unit. The ranges of luminous Intensity measurements and observation angles are 0.01~199900 cd and 0.2~1.5 degree respectively. The uncertainty of luminous intensity measurements is $\pm$3%. This paper describes the construction of the distribution photometer and the performance characteristics.

  • PDF

Effects of Light Intensity and Quality on the Growth and Quality of Korean Ginseng (Panax ginseng C.A. Meyer) II. Relationship between Light Intensity and Planting Density (광량 및 광질이 고려인삼의 생육과 품질에 미치는 영향 II. 광량과 재식밀도와의 관계)

  • Cheon, Seong-Gi;Mok, Seong-Gyun;Lee, Seong-Sik
    • Journal of Ginseng Research
    • /
    • v.15 no.1
    • /
    • pp.31-35
    • /
    • 1991
  • In order to know the optimum planting density under shading structures at different light intensity, We investigated the growth status, distribution of ginseng leaf area, correlation between planting density and root weight per plant and yield, correlation between leaf area index and root weight per plant and yield. According to the increase of planting density the leaf area per plant was decreased, but leaf area index (L.A.I) was increased. Ginseng leaf population at different lines under common straw shading were distributed mainly in frost lines but polyethylene net shading at 10fo light intensity were distributed equally in all lines. Optimum planting density in common straw shading at 5% light intensity was 55 plant per tan (90 cmX180 cm) and polyethylene net shading 81 10% light intensity was 60 plant per tan, in consideration of root weight and yield. Optimum leaf area index was 2.4 under common straw shading at 5% light intensity but was 2.7 under polyethylene net shading at 10% light intensity.

  • PDF

Controlling the Intensity Distribution of Light at the Output of a Multimode Optical Fiber Using a Polar-coordinate-based Transmission-matrix Method (극좌표 기반 투과 매트릭스 방법을 이용한 다중모드 광섬유 출력단에서의 빛의 세기 분포 제어)

  • Park, Jaedeok;Jo, Jaepil;Yoon, Jonghee;Yeom, Dong-Il
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.6
    • /
    • pp.252-259
    • /
    • 2022
  • We have conducted a study to control the light-intensity distribution at the output end of a multimode optical fiber via estimating the transmission matrix. A circularly arranged Hadamard eigenmode phase distribution was implemented using a spatial light modulator, and the transmission matrix of a multimode optical fiber was experimentally obtained using a four-phase method. Based on the derived transmission matrix, the spatial phase distribution of light incident upon the optical fiber was adjusted via the spatial light modulator in advance, to focus the light at a desired position at the optical fiber output. The light could be focused with an intensity up to 359.6 times as high as that of the surrounding background signal at a specific position of the multimode fiber's output end, and the intensity of the focused beam was on average 104.6 times as large as that of the background signal, across the area of the multimode fiber's core.

Research of Optical Design Method for Prism Luminaire (조명기구용 프리즘의 광학 설계법에 관한 연구)

  • Seok, Dae-Il;Lee, Chang-Mo;Kim, Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.6
    • /
    • pp.19-25
    • /
    • 2007
  • We studied prism design method for actual light source that have bulk in order to accomplish particular intensity distribution. When we know incidence angle and try to send ray to given direction, numerical formula that yields prism vertical angle, and then vertical angles were calculated sequentially. After analyzing problem that supposing to point light source, supplemented this and derived applicable prism design method on bulk light source. The intensity distribution and efficiency that came out by each design results were compared and analyzed, we got improved results through supplemented design method.

A Study on the Control Characteristics of Line Scan Light Source for Machine Vision Line Scan Camera (머신 비전 라인 스캔 카메라를 위한 라인 스캔 광원의 제어 특성에 관한 연구)

  • Kim, Tae-Hwa;Lee, Cheon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.371-381
    • /
    • 2021
  • A machine vision inspection system consists of a camera, optics, illumination, and image acquisition system. Especially a scanning system has to be made to measure a large inspection area. Therefore, a machine vision line scan camera needs a line scan light source. A line scan light source should have a high light intensity and a uniform intensity distribution. In this paper, an offset calibration and slope calibration methods are introduced to obtain a uniform light intensity profile. Offset calibration method is to remove the deviation of light intensity among channels through adding intensity difference. Slope calibration is to remove variation of light intensity slope according to the control step among channels through multiplying slope difference. We can obtain an improved light intensity profile through applying offset and slope calibration simultaneously. The proposed method can help to obtain clearer image with a high precision in a machine vision inspection system.

A Study on Light Quality of LED for Control of Light Intensity (광 강도 제어에 따른 LED의 광질에 관한 연구)

  • Park, Sang-Hee;An, Jun-Chul;Heo, Jung-Wook;Choi, Han-Ko;Choi, Sung-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.175-182
    • /
    • 2012
  • Light characteristics of the monochromatic red(R), blue(B), green(G) and white(W) and the mixed LED (B-R LED) were investigated by light control a Spectrometer-MMS1 and an illuminometer. The power consumption of each LED was 1W and R LED has five wavelength bands(600nm, 640nm, 660nm, 680nm, 750nm). The light intensity of each LED was changed in a range 10~100%. As a results, the wavelength and the spectrum distribution of R LED increase with increasing light intensity but the wavelength of B, G, W LED decreases. It was found that illumination of each mononochromatic and B-R LED increases linearly with increasing light intensity. It was confirmed that the illumination intensity of R-B light has greater values than those obtained by monochromatic light at the same conditions.

A Study for the Control of Various Luminous Intensity Distribution in Numerical Model of Planar Prism LED Luminaire (평면 프리즘 LED 조명기구 배광수치모델의 다양한 배광 제어를 위한 연구)

  • Kim, Yu-Sin;Choi, An-Seop
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.12
    • /
    • pp.60-66
    • /
    • 2011
  • There are several technological problems have to be resolved for LEDs to be used as a general purpose light source. In addition, there are several differences between existing luminaires and the general planer LED luminaire for the intensity distribution. Therefore, the optical engineer then faces the challenging a problem of designing for a spatially extended and non-uniform light source. In the previous studies on the optical design of luminaires, a lot of studies on reflectors and light source have been conducted but the ones on prisms and lenses are insufficient at present. This study developed the numerical model of planar prism LED luminaire to control luminous intensity distribution of LED luminaires. And this study presents an optical calculation process for the prism optical design of a planar prism LED luminaire and a comparison of the simulation results between the developed numerical model and Photopia 2.0 to verify the accuracy of the numerical model. In addition, this study showed a method for the control of various luminous intensity distribution from the developed numerical model.

Analysis of Spectral Light Intensity of High Pressure Sodium and Metal Halide Lamps for Plant Growth (식물생장용 고압나트륨램프와 메탈할라이드램프의 분광 광강도 분석)

  • Lee, Hye-In;Kim, Yong-Hyeon;Kim, Dong-Eok
    • Journal of Biosystems Engineering
    • /
    • v.35 no.6
    • /
    • pp.413-419
    • /
    • 2010
  • Plant growth was greatly affected by the spectral distribution and light intensity of artificial lighting sources. In this study, the spectral characteristics of high power sodium (HPS) lamps and metal halide (MH) lamps produced by three different manufacturers were measured. Even though the spectral distribution of HPS lamps with lamp wattage of 250 W and 400 W was very similar, but the spectral light intensity by the manufacturers was different. Difference in the spectral light intensity of MH lamps by the manufacturers was increased with the increasing lamps wattage. Light intensity at the region of blue (B), green (G), red (R) and far-red (FR) light of HPS and MH lamps was also analyzed. HPS lamps showed the light intensity in order of R, FR, B and G light. The ratio of G, B, R and FR to photosynthetic photon flux (PPF) of HPS lamps with the lamp wattage of 250 W was 3.0-3.2%, 5.5-5.9%, 17.3-19.2% and 6.5-7.8%, respectively. For MH lamps, it showed the light intensity in order of R, FR, B, and G. The ratio of B, G, R, and FR to PPF of MH lamps with 250 W was 14.0-15.5%, 22.6-27.5%, 7.5-9.5% and 2.7-4.2%, respectively. HPS and MH lamps with 400 W had a relatively smaller ratio of R and FR to PPF than those with 250 W. HPS lamps showed that the ratio of light intensity of B and FR to R was 0.15-0.28 and 0.36-0.4, respectively. For MH lamps, the ratio of light intensity of B and FR to R was 1.26-2.72 and 0.27-0.56, respectively. From these results, it was concluded that the portion of blue light of MH lamps was higher than those of HPS lamps.

Design & Analysis of an Error-reduced Precision Optical Triangulation Probes (오차 최소화된 정밀 광삼각법 프로브의 해석 및 설계)

  • Kim, Kyung-Chan;Oh, Se-Baek;Kim, Jong-Ahn;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.411-414
    • /
    • 2000
  • Optical Triangulation Probes (OTPs) are widely used for their simple structure. high resolution, and long operating range. However, errors originating from speckle, inclination of the object, source power fluctuation, ambient light, and noise of the detector limit their usability. In this paper, we propose new design criteria for an error-reduced OTP. The light source module for the system consists of an incoherent light source and a multimode optical fiber for eliminating speckle and shaping a Gaussian beam Intensity profile. A diffuse-reflective white copy paper, which is attached to the object, makes the light intensity distribution on the change-coupled device(CCD). Since the peak positions of the intensity distribution are not related to the various error sources, a sub-pixel resolution signal processing algorithm that can detect the peak position makes it possible to construct an error-reduced OTP system

  • PDF

An Experimental Study on the Light Transmission Characteristics with Oil Contamination (윤활유 오염에 따른 광투과율 변화에 관한 실험적 연구)

  • 조성용;장철주;공호성;윤의성;한흥구
    • Tribology and Lubricants
    • /
    • v.17 no.6
    • /
    • pp.482-489
    • /
    • 2001
  • Changes in light transmission characteristics caused by various types of oil contaminations were experimentally measured with a built-in type wear monitoring device. Three kinds of iron powders of different size distribution, carbon duct, two kinds of solutions and grease were used for the test contaminants in this work. Light intensity of the transmitted light was measured with the contamination level. Results showed that the transmitted light intensity decreased linearly with the contamination concentration in the oil and the slope was affected by the size distribution. Light attenuation was also caused greatly by carbon dust, water contamination and poly-meric fibers in terms of the light absorption. As a result, it was proved that the optical measurement device could be applicable effectively for detecting any significant change in lubricating oils.