• Title/Summary/Keyword: Light Detection and Ranging(LiDAR)

Search Result 163, Processing Time 0.025 seconds

LiDAR Chip for Automated Geo-referencing of High-Resolution Satellite Imagery (라이다 칩을 이용한 고해상도 위성영상의 자동좌표등록)

  • Lee, Chang No;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.4_1
    • /
    • pp.319-326
    • /
    • 2014
  • The accurate geo-referencing processes that apply ground control points is prerequisite for effective end use of HRSI (High-resolution satellite imagery). Since the conventional control point acquisition by human operator takes long time, demands for the automated matching to existing reference data has been increasing its popularity. Among many options of reference data, the airborne LiDAR (Light Detection And Ranging) data shows high potential due to its high spatial resolution and vertical accuracy. Additionally, it is in the form of 3-dimensional point cloud free from the relief displacement. Recently, a new matching method between LiDAR data and HRSI was proposed that is based on the image projection of whole LiDAR data into HRSI domain, however, importing and processing the large amount of LiDAR data considered as time-consuming. Therefore, we wmotivated to ere propose a local LiDAR chip generation for the HRSI geo-referencing. In the procedure, a LiDAR point cloud was rasterized into an ortho image with the digital elevation model. After then, we selected local areas, which of containing meaningful amount of edge information to create LiDAR chips of small data size. We tested the LiDAR chips for fully-automated geo-referencing with Kompsat-2 and Kompsat-3 data. Finally, the experimental results showed one-pixel level of mean accuracy.

Improvement of Air Temperature Analysis by Precise Spatial Data on a Local-scale - A Case Study of Eunpyeong New Town in Seoul - (상세 공간정보를 활용한 국지기온 분석 개선 - 서울 은평구 뉴타운을 사례로 -)

  • Yi, Chae-Yeon;An, Seung-Man;Kim, Kyu-Rang;Choi, Young-Jean;Scherer, Dieter
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.1
    • /
    • pp.144-158
    • /
    • 2012
  • A higher spatial resolution is preferable to support the accuracy of detailed climate analysis in urban areas. Airborne LiDAR (Light Detection And Ranging) and satellite (KOMPSAT-2, Korea Multi-Purpose Satellite-2) images at 1 to 4 m resolution were utilized to produce digital elevation and building surface models as well as land cover maps at very high(5m) resolution. The Climate Analysis Seoul(CAS) was used to calculate the fractional coverage of land cover classes in built-up areas and thermal capacity of the buildings from their areal volumes. It then produced analyzed maps of local-scale temperature based on the old and new input data. For the verification of the accuracy improvement by the precise input data, the analyzed maps were compared to the surface temperature derived from the ASTER satellite image and to the ground observation at our detailed study region. After the enhancement, the ASTER temperature was highly correlated with the analyzed temperature at building (BS) areas (R=0.76) whereas there observed no correlation with the old input data. The difference of the air temperature deviation was reduced from 1.27 to 0.70K by the enhancement. The enhanced precision of the input data yielded reasonable and more accurate local-scale temperature analysis based on realistic surface models in built-up areas. The improved analysis tools can help urban planners evaluating their design scenarios to be prepared for the urban climate.

On the Control of Initial Phases in Optical Phased Array Based LADAR Systems: Hill-Climbing Based Approach (광위상배열 기반 LADAR의 초기 위상 제어 기법 연구: 언덕 오름 기반 접근법)

  • Kim, Taehoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.467-474
    • /
    • 2019
  • Recently, optical phased array(OPA) based laser detection and ranging(LADAR) has gained great interest to replace the traditional mechanical light detection and ranging technique(LiDAR). In OPA-based LADAR, it is well known that phases of laser pulses traveling through each of channels should be the same to obtain a narrow free-space single beam without noise-like ripples in the far field. However, it is difficult to provide such ideal condition due to the fabrication errors. To tackle this problem, any algorithms should be necessary to compensate the initial random phases of each channel in OPA antenna. In this paper, we propose a hill-climbing based phase calibration algorithm and evaluate the performance of the proposed algorithm.

Two-Dimensional(2-D) Flood Inundation Modeling Considering Mesh Type and Resolution (격자유형과 해상도를 고려한 2차원 홍수범람 모델링)

  • Kim, Byunghyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.247-256
    • /
    • 2019
  • In this study, 2-D Godunov type finite volume model which can apply the mixed mesh including triangular and quadrilateral meshes for flood inundation modeling is used to compare and analyze the flood height, flood extent and model execution time according to mesh type and resolution. The study area is the Upton-upon Severn watershed in Great Britain, where the flood occurred for 22 days from October 29 to November 19, 2000. For the flood modeling, topographic data were constructed using high resolution LiDAR (Light Detection And Ranging). The results of the 2-D flood modeling by the mesh type and resolution were compared with four ASAR (Airborne Synthetic Aperture Radar) images captured during the flood period. This study has shown that flood height and extent can vary greatly depending on the mesh type and resolution, even if identical topography and boundary conditions are used, and that the selection of appropriate mesh type and resolution for the purpose and situation of the 2-D flood modeling is necessary.

Mobile Mapping System Development Based on MEMS-INS for Measurement of Road Facility (도로시설물 계측을 위한 MEMS-INS 기반 모바일매핑시스템(MMS) 개발)

  • Lee, Kye Dong;Jung, Sung Heuk;Lee, Ki Hyung;Choi, Yun Soo;Kim, Man Sik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.2
    • /
    • pp.75-84
    • /
    • 2018
  • The purpose of this study is that the low-cost mobile mapping system using INS (Inertial Navigation System) based on MEMS (Micro Electro Mechanical System) could decipher the interpretation of road facility with the accuracy of x, y 0.546m plane error. Even though the MMS (Mobile Mapping System) technology as a new measurement technology has been used vividly to set up geographic information by some world leading surveying equipment manufacturers, the domestic technology is still in its beginning stage. Several domestic institutes and companies tried to catch up the leading technology but they just produced prototypes which needs more stabilization. Through this thesis, we developed low-cost mobile mapping system installed with INS based on MEMS after time synchronizing sensors for MMS such as LiDAR (Light Detection And Ranging), CCD (Charge Coupled Device), GPS/INS (Global Positioning System / Inertial Navigation System) and DMI (Distance Measurement Instrument).

Development of Autonomous Algorithm for Boat Using Robot Operating System (로봇운영체제를 이용한 보트의 자율운항 알고리즘 개발)

  • Jo, Hyun-Jae;Kim, Jung-Hyeon;Kim, Su-Rim;Woo, Ju-Hyun;Park, Jong-Yong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.2
    • /
    • pp.121-128
    • /
    • 2021
  • According to the increasing interest and demand for the Autonomous Surface Vessels (ASV), the autonomous navigation system is being developed such as obstacle detection, avoidance, and path planning. In general, autonomous navigation algorithm controls the ship by detecting the obstacles with various sensors and planning path for collision avoidance. This study aims to construct and prove autonomous algorithm with integrated various sensor using the Robot Operating System (ROS). In this study, the safety zone technique was used to avoid obstacles. The safety zone was selected by an algorithm to determine an obstacle-free area using 2D LiDAR. Then, drift angle of the ship was controlled by the propulsion difference of the port and starboard side that based on PID control. The algorithm performance was verified by participating in the 2020 Korea Autonomous BOAT (KABOAT).

LiDAR-based Mobile Robot Exploration Considering Navigability in Indoor Environments (실내 환경에서의 주행가능성을 고려한 라이다 기반 이동 로봇 탐사 기법)

  • Hyejeong Ryu;Jinwoo Choi;Taehyeon Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.487-495
    • /
    • 2023
  • This paper presents a method for autonomous exploration of indoor environments using a 2-dimensional Light Detection And Ranging (LiDAR) scanner. The proposed frontier-based exploration method considers navigability from the current robot position to extracted frontier targets. An approach to constructing the point cloud grid map that accurately reflects the occupancy probability of glass obstacles is proposed, enabling identification of safe frontier grids on the safety grid map calculated from the point cloud grid map. Navigability, indicating whether the robot can successfully navigate to each frontier target, is calculated by applying the skeletonization-informed rapidly exploring random tree algorithm to the safety grid map. While conventional exploration approaches have focused on frontier detection and target position/direction decision, the proposed method discusses a safe navigation approach for the overall exploration process until the completion of mapping. Real-world experiments have been conducted to verify that the proposed method leads the robot to avoid glass obstacles and safely navigate the entire environment, constructing the point cloud map and calculating the navigability with low computing time deviation.

ETLi: Efficiently annotated traffic LiDAR dataset using incremental and suggestive annotation

  • Kang, Jungyu;Han, Seung-Jun;Kim, Nahyeon;Min, Kyoung-Wook
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.630-639
    • /
    • 2021
  • Autonomous driving requires a computerized perception of the environment for safety and machine-learning evaluation. Recognizing semantic information is difficult, as the objective is to instantly recognize and distinguish items in the environment. Training a model with real-time semantic capability and high reliability requires extensive and specialized datasets. However, generalized datasets are unavailable and are typically difficult to construct for specific tasks. Hence, a light detection and ranging semantic dataset suitable for semantic simultaneous localization and mapping and specialized for autonomous driving is proposed. This dataset is provided in a form that can be easily used by users familiar with existing two-dimensional image datasets, and it contains various weather and light conditions collected from a complex and diverse practical setting. An incremental and suggestive annotation routine is proposed to improve annotation efficiency. A model is trained to simultaneously predict segmentation labels and suggest class-representative frames. Experimental results demonstrate that the proposed algorithm yields a more efficient dataset than uniformly sampled datasets.

Determination of Physical Footprints of Buildings with Consideration Terrain Surface LiDAR Data (지표면 라이다 데이터를 고려한 건물 외곽선 결정)

  • Yoo, Eun Jin;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.5
    • /
    • pp.503-514
    • /
    • 2016
  • Delineation of accurate object boundaries is crucial to provide reliable spatial information products such as digital topographic maps, building models, and spatial database. In LiDAR(Light Detection and Ranging) data, real boundaries of the buildings exist somewhere between outer-most points on the roofs and the closest points to the buildings among points on the ground. In most cases, areas of the building footprints represented by LiDAR points are smaller than actual size of the buildings because LiDAR points are located inside of the physical boundaries. Therefore, building boundaries determined by points on the roofs do not coincide with the actual footprints. This paper aims to estimate accurate boundaries that are close to the physical boundaries using airborne LiDAR data. The accurate boundaries are determined from the non-gridded original LiDAR data using initial boundaries extracted from the gridded data. The similar method implemented in this paper is also found in demarcation of the maritime boundary between two territories. The proposed method consists of determining initial boundaries with segmented LiDAR data, estimating accurate boundaries, and accuracy evaluation. In addition, extremely low density data was also utilized for verifying robustness of the method. Both simulation and real LiDAR data were used to demonstrate feasibility of the method. The results show that the proposed method is effective even though further refinement and improvement process could be required.

Noncontact measurements of the morphological phenotypes of sorghum using 3D LiDAR point cloud

  • Eun-Sung, Park;Ajay Patel, Kumar;Muhammad Akbar Andi, Arief;Rahul, Joshi;Hongseok, Lee;Byoung-Kwan, Cho
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.483-493
    • /
    • 2022
  • It is important to improve the efficiency of plant breeding and crop yield to fulfill increasing food demands. In plant phenotyping studies, the capability to correlate morphological traits such as plant height, stem diameter, leaf length, leaf width, leaf angle and size of panicle of the plants has an important role. However, manual phenotyping of plants is prone to human errors and is labor intensive and time-consuming. Hence, it is important to develop techniques that measure plant phenotypic traits accurately and rapidly. The aim of this study was to determine the feasibility of point cloud data based on a 3D light detection and ranging (LiDAR) system for plant phenotyping. The obtained results were then verified through manually acquired data from the sorghum samples. This study measured the plant height, plant crown diameter and the panicle height and diameter. The R2 of each trait was 0.83, 0.94, 0.90, and 0.90, and the root mean square error (RMSE) was 6.8 cm, 1.82 cm, 5.7 mm, and 7.8 mm, respectively. The results showed good correlation between the point cloud data and manually acquired data for plant phenotyping. The results indicate that the 3D LiDAR system has potential to measure the phenotypes of sorghum in a rapid and accurate way.