• Title/Summary/Keyword: Ligand-binding

Search Result 453, Processing Time 0.031 seconds

Theoretical Investigations on Structure and Function of Human Homologue hABH4 of E.coli ALKB4

  • Shankaracharya, Shankaracharya;Das, Saibal;Prasad, Dinesh;Vidyarthi, Ambarish Sharan
    • Interdisciplinary Bio Central
    • /
    • v.2 no.3
    • /
    • pp.8.1-8.5
    • /
    • 2010
  • Introduction: Recently identified human homologues of ALKB protein have shown the activity of DNA damaging drugs, used for cancer therapy. Bioinformatics study of hABH2 and hABH3 had led to the discovery of a novel DNA repair mechanism. Very little is known about structure and function of hABH4, one of the members of this superfamily. Therefore, in present study we are intended to predict its structure and function through various bioinformatics tools. Materials and Methods: Modeling was done with modeler 9v7 to predict the 3D structure of the hABH4 protein. This model was validated with the program Procheck using Ramachandran plot statistics and was submitted to PMDB with ID PM0076284. The 3d2GO server was used to predict the functions. Residues at protein ligand and protein RNA binding sites were predicted with 3dLigandSite and KYG programs respectively. Results and Discussion: 3-D model of hABH4, ALKBH4.B99990003.pdb was predicted and evaluated. Validation result showed that 96.4 % residues lies in favored and additional allowed region of Ramachandran plot. Ligand binding residues prediction showed four Ligand clusters, having 24 ligands in cluster 1. Importantly, conserved pattern of Glu196-X-Pro198- Xn-His254 in the functional domain was detected. DNA and RNA binding sites were also predicted in the model. Conclusion and Prospects: The predicted and validated model of human homologue hABH4 resulted from this study may unveil the mechanism of DNA damage repair in human and accelerate the research on designing of appropriate inhibitors aiding in chemotherapy and cancer related diseases.

Protein-ligand interactions from the perspective of binding specificity

  • Ahmad, Shandar
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2003.10a
    • /
    • pp.4-4
    • /
    • 2003
  • A large number of in-vitro experiments on the inhibition of kinases and pretenses are reported in literature, and compiled by ProLINT database. Using this powerful wealth of knowledge, we have carried our an analysis of ligand specificity of these two classes of proteins. Each of the pretenses and kinases included in the database has been assigned a consensus ligand fragment signature, based on the available information about its interaction with different ligands. A set of 43 fragments efficiently represent every ligand. We have then organized the consensus fragment signatures for every protein in form of a cluster-tree diagram. This tree is also constructed from other sequence, structure and physical considerations. Cluster-cluster comparison between these analyzes provide a valuable information about ligand specific interactions and similarities between proteins.

  • PDF

Molecular Co-evolution of Gonadotropin-releasing Hormones and Their Receptors

  • Seong, Jae-Young;Kwon, Hyuk-Bang
    • Animal cells and systems
    • /
    • v.11 no.2
    • /
    • pp.93-98
    • /
    • 2007
  • Gonadotropin-releasing hormone (GnRH), synthesized in the hypothalamus, plays a pivotal role in the regulation of vertebrate reproduction. Since molecular isoforms of GnRH and their receptors (GnRHR) have been isolated in a broad range of vertebrate species, GnRH and GnRHR provide an excellent model for understanding the molecular co-evolution of a peptide ligand-receptor pair. Vertebrate species possess multiple forms of GnRH, which have been created through evolutionary mechanisms such as gene/chromosome duplication, gene deletion and modification. Similar to GnRHs, GnRH receptors (GnRHR) have also been diversified evolutionarily. Comparative ligand-receptor interaction studies for non-mammalian and mammalian GnRHRs combined with mutational mapping studies of GnRHRs have aided the identification of domains or motifs responsible for ligand binding and receptor activation. Here we discuss the molecular basis of GnRH-GnRHR co-evolution, particularly the structure-function relationship regarding ligand selectivity and signal transduction of mammalian and non-mammalian GnRHRs.

Ginsenoside-Rb1 Acts as a Weak Estrogen Receptor Agonist Independent of Ligand Binding.

  • Park, Wan-Kyu;Jungyoon Cho;Lee, Young-Joo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.114-114
    • /
    • 2003
  • Ginseng is a medicinal herb widely used in Asian countries, and its pharmacological effects has been demonstrated in various systems such as cardiovascular, central nervous, and endocrine systems. Its effects are mainly attributed to the ginsenosides. We hypothesize that a component of Panax ginseng, ginsenoside-Rbl, acts by binding to estrogen receptor. We have investigated the estrogenic activity of ginsenoside-Rbl in a transient transfection system using estrogen receptors ${\alpha}$ or ${\beta}$ with estrogen -responsive luciferase plasmids in COS monkey kidney cells. Ginsenoside-Rbl activated both estrogen receptors ${\alpha}$ and ${\beta}$ in a dose-dependent manner (0.5 -100 M ). Activation was inhibited by the specific estrogen receptor antagonist ICI 182,780, indicating that the estrogenic effect of ginsenoside-Rbl is estrogen receptor dependent. Next, we evaluated the ability of ginsenoside-Rbl to induce estrogen-responsive progesterone receptor gene by semi-quantitative RT-PCR assays. MCF-7 cells treated with l7${\beta}$-estradiol or ginsenoside- Rb1 exhibited an increased expression of progesterone receptor mRNA. However, ginsenoside-Rbl failed to displace the specific binding of [3H]17${\beta}$-estradiol to estrogen receptor in MCF-7 cells as examined by whole cell ligand binding assays, suggesting that there is no direct interaction of ginsenoside-Rbl with estrogen receptor. Our results indicate that estrogen-like activity of ginsenoside-Rbl is independent of direct estrogen receptor association.

  • PDF

Effect of PEG chain additive on 6,8-dichloro-2-phenylimidazo[1,2-a] pyridineacetamide (CB185) as a TSPO-binding ligand

  • Lee, Won Chang;Lee, Sang Hee;Denora, Nunzio;Laquintana, Valentino;Lee, Byung Chul;Kim, Sang Eun
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.5 no.2
    • /
    • pp.89-100
    • /
    • 2019
  • In our previous studies, we developed a 18F-labeled TSPO-binding ligand, named [18F]CB251, which has been proved to be a promising TSPO-binding PET radiotracer for the detection and monitoring of TSPO expression in pathological diseases. (Ki = 0.27 nM for TSPO, 1.96% ID/g of tumor uptake at 1h post-injection) Based on these results, we utilized 6,8-dichloro-2-phenylimidazo[1,2-a]pyridineacetamide analogs, CB185 (1) as a targeting moiety for the selective delivery of probes and anticancer molecules to TSPO-overexpressed tissues. In this study, we designed CB185 derivatives contains different PEG chains (n = 1, 3 and 5) and fluorescence dye (Cy5) to identify the necessary space between a TSPO-binding ligand and an anticancer agent. Three CB185 derivatives (11a-c) which contains Cy5 and PEG chain, were synthesized and the effect of PEG additive on their TSPO-binding affinities were evaluated using in vitro assays. The binding affinity for compounds 11a-c was lower than that of PK11195 (Ki = 3.2 nM), but still characterized by nanomolar binding affinity for TSPO (Ki = 46.5 nM for 11a, 51.0 nM for 11b, and 388.5 nM for 11c). These results showed that the conjugates are characterized by a moderate binding affinity toward TSPO except for compound 11c, which PEG chain consist of five PEG monomers. Our finding might add useful information to decide the appropriate PET chain length for developing new TSPO-targeting drug carriers.

Synthesis and Chromatographic Characteristics of Multidentate Ligand-Boned Silica Stationary Phases

  • Li, Rong;Wang, Yan;Chen, Guo-Liang;Shi, Mei;Wang, Xiao-Gang;Zheng, Jian-Bin
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2201-2206
    • /
    • 2010
  • To improve the separation property and stability of metal chelate Cu(II) column, three new kinds of multidentate aminocarboxy silica columns with cation-exchange properties were synthesized using glutamic acid (Glu), glutamic acidbromoacetic acid (Glu-BAA), glutamic acid-bromosuccinic acid (Glu-BSUA) as ligands and silica gel as matrix. The standard proteins were separated with prepared chromatographic columns. The stationary phases exhibited the metal chelate property after fixing copper ion (II) on the synthesized multidentate ligand silica columns. The binding capacity of immobilized metal ion was related with the dentate number of multidentate ligands. Chromatographic behavior of proteins and the leakage of immobilized metal ion on multidentate chelate Cu(II) columns were affected by the dentate number of multidentate ligands and competitive elution system directly. The results showed that quinquedentate Glu-BSUA-Cu(II) column exhibited better chromatographic property and stability as compared with tridentate Glu-Cu(II) column, tetradentate Glu-BAA-Cu(II) column and commonly used IDA-Cu(II) column.

A new function of glucocorticoid receptor: regulation of mRNA stability

  • Park, Ok Hyun;Do, Eunjin;Kim, Yoon Ki
    • BMB Reports
    • /
    • v.48 no.7
    • /
    • pp.367-368
    • /
    • 2015
  • It has long been thought that glucocorticoid receptor (GR) functions as a DNA-binding transcription factor in response to its ligand (a glucocorticoid) and thus regulates various cellular and physiological processes. It is also known that GR can bind not only to DNA but also to mRNA; this observation points to the possible role of GR in mRNA metabolism. Recent data revealed a molecular mechanism by which binding of GR to target mRNA elicits rapid mRNA degradation. GR binds to specific RNA sequences regardless of the presence of a ligand. In the presence of a ligand, however, the mRNA-associated GR can recruit PNRC2 and UPF1, both of which are specific factors involved in nonsense-mediated mRNA decay (NMD). PNRC2 then recruits the decapping complex, consequently promoting mRNA degradation. This mode of mRNA decay is termed "GR-mediated mRNA decay" (GMD). Further research demonstrated that GMD plays a critical role in chemotaxis of immune cells by targeting CCL2 mRNA. All these observations provide molecular insights into a previously unappreciated function of GR in posttranscriptional regulation of gene expression. [BMB Reports 2015; 48(7): 367-368]

Recent Development of Search Algorithm on Small Molecule Docking (소분자 도킹에서의 탐색알고리듬의 현황)

  • Chung, Hwan Won;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.2 no.2
    • /
    • pp.55-58
    • /
    • 2009
  • A ligand-receptor docking program is an indispensible tool in modern pharmaceutical design. An accurate prediction of small molecular docking pose to a receptor is essential in drug design as well as molecular recognition. An effective docking program requires the ability to locate a correct binding pose in a surprisingly complex conformational space. However, there is an inherent difficulty to predict correct binding pose. The odds are more demanding than finding a needle in a haystack. This mainly comes from the flexibility of both ligand and receptor. Because the searching space to consider is so vast, receptor rigidity has been often applied in docking programs. Even nowadays the receptor may not be considered to be fully flexible although there have been some progress in search algorithm. Improving the efficiency of searching algorithm is still in great demand to explore other applications areas with inherently flexible ligand and/or receptor. In addition to classical search algorithms such as molecular dynamics, Monte Carlo, genetic algorithm and simulated annealing, rather recent algorithms such as tabu search, stochastic tunneling, particle swarm optimizations were also found to be effective. A good search algorithm would require a good balance between exploration and exploitation. It would be a good strategy to combine algorithms already developed. This composite algorithms can be more effective than an individual search algorithms.

  • PDF