• Title/Summary/Keyword: Ligand-binding

Search Result 453, Processing Time 0.022 seconds

Biodistribution and Hepatic Metabolism of Galactosylated $^{111}In-Antibody-Chelator$ Conjugates: Comparison with $^{111}In-Antibody-Chelator$ Conjugates ($^{111}In$-표지 갈락토즈 접합 항체의 체내분포 및 간에서의 대사 : $^{111}In$-표지 항체와의 비교연구)

  • Kwak, Dong-Suk;Jeong, Kyu-Sik;Ha, Jeoung-Hee;Ahn, Byeong-Cheol;Lee, Kyu-Bo;Paik, Chang-H.;Lee, Jae-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.6
    • /
    • pp.402-417
    • /
    • 2003
  • Purpose: To evaluate the use of monoclonal antibody (MoAb) as a carrier of the receptor-binding ligand the receptor mediated uptake into liver and subsequent metabolism of $^{111}In-labeled$ galactosylated MoAb-chelator conjugates were investigated and compared with those of $^{111}In$ labeled MoAb. Materials and Methods : T101 MoAb, $IgG_2$ against human lymphocytic leukemic cell, conjugated with cyclic DTPA dianhydride (DTPA) or 2-p-isothiocyanatobenzyl-6-methyl-DTPA (1B4M) was galactosylated with 2-imino-2-methoxyethyl-1-thio-${\beta}$-D-galactose and then radiolabeled with $^{111}In$. Biodistribution and metabolism study was peformed with two $^{111}In-conjugates$ in mice and rats. Results: $^{111}In-labeled$ T101 and its galactosylated conjugates were taken to the liver by the time, mostly within 10 min. However DTPA conjugate was retained longer in the liver than the 1B4M conjugate (55% vs 20% of injected dose at 44 hr). During this time, the radiornetabolite of DTPA conjugate was excreted similarly into urine (24%) and feces (17%). The radiometabolite of 1B4M was excreted primarily into feces (68%) rather than urine (8%). Size exclusion HPLC analysis of the bile and supernatant of liver homogenate showed two peaks the first (35%) with the retention time (Rt) identical to IgG and the second (65%) with Rt similar to free $^{111}In$ at 3 hr post-injection for the 1B4M conjugate, indicating that the metabolite is rapidly excreted through the biliary system. in contrast to DTPA conjugate, the small $^{111}In-DTPA-like$ metabolite was the major radioindium component (90%) in the liver homogenate as early as 3 hour post-injection, but the cumulative radioindium activity in feces was only 17% at 44 hour, indicating that the metabolite from DTPA conjugate does not clear readily through the biliary tract. Conclusion: The galactosylation of the MoAb conjugates resulted in higher hepatocyte uptake and enhanced metabolism, compared to those without galactosylation. Metabolism of the MoAb-conjugates is different between compounds radiolabled with different chelators due to different characteristics of radiometabolites generated in the liver.

The Cross-talk Mechanisms of Constitutive Androstane Receptor (CAR) in the Regulation of its Activity, Energy Metabolism, Cellular Proliferation and Apoptosis (Constitutive Androstane Receptor (CAR)의 활성, 에너지 대사 및 세포의 증식과 사멸의 조절에 대한 CAR의 cross-talk 기전)

  • Min, Gyesik
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.211-220
    • /
    • 2020
  • The activity of CAR can be regulated not only by ligand binding but also by phosphorylation of regulatory factors involved in extracellular signaling pathways, cross-talk interactions with transcription factors, and the recruitment, degradation, and expression of coactivators and corepressors. This regulation of CAR activity can in turn have effects on the control of diverse physiological homeostasis, including xenobiotic and energy metabolism, cellular proliferation, and apoptosis. CAR is phosphorylated by the ERK1/2 signaling pathway, which causes formation of a complex with Hsp-90 and CCRP, leading to its cytoplasmic retention, whereas phenobarbital inhibits ERK1/2, which causes dephosphorylation of the downstream signaling molecules, leading to the recruitment to CAR of the activated RACK-1/PP2A components for the dephosphorylation, nuclear translocation, and the transcriptional activation of CAR. Activated CAR cross-talks with FoxO1 to induce inhibition of its transcriptional activity and with PGC-1α to induce protein degradation by ubiquitination, resulting in the transcriptional suppression of PEPCK and G6Pase involved in gluconeogenesis. Regulation by CAR of lipid synthesis and oxidation is achieved by its functional cross-talks, respectively, with PPARγ through the degradation of PGC-1α to inhibit expression of the lipogenic genes and with PPARα through either the suppression of CPT-1 expression or the interaction with PGC-1α each to induce tissue-specific inhibition or stimulation of β-oxidation. Whereas CAR stimulates cellular proliferation by suppressing p21 expression through the inhibition of FoxO1 transcriptional activity and inducing cyclin D1 expression, it suppresses apoptosis by inhibiting the activities of MKK7 and JNK-1 through the expression of GADD45B. In conclusion, CAR is involved in the maintenance of homeostasis by regulating not only xenobiotic metabolism but also energy metabolism, cellular proliferation, and apoptosis through diverse cross-talk interactions with extracellular signaling pathways and intracellular regulatory factors.

Optimization and Stabilization of Automated Synthesis Systems for Reduced 68Ga-PSMA-11 Synthesis Time (68Ga-PSMA-11 합성 시간 단축을 위한 자동합성장치의 최적화 및 안정성 연구)

  • Ji hoon KANG;Sang Min SHIN;Young Si PARK;Hea Ji KIM;Hwa Youn JANG
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.56 no.2
    • /
    • pp.147-155
    • /
    • 2024
  • Gallium-68-prostate-specific membrane antigen-11 (68Ga-PSMA-11) is a positron emission tomography radiopharmaceutical that labels a Glu-urea-Lys-based ligand with 68Ga, binding specifically to the PSMA. It is used widely for imaging recurrent prostate cancer and metastases. On the other hand, the preparation and quality control testing of 68Ga-PSMA-11 in medical institutions takes over 60 minutes, limiting the daily capacity of 68Ge/68Ga generators. While the generator provides 1,110 MBq (30 mCi) nominally, its activity decreases over time, and the labeling yield declines irregularly. Consequently, additional preparations are needed, increasing radiation exposure for medical technicians, prolonging patient wait times, and necessitating production schedule adjustments. This study aimed to reduce the 68Ga-PSMA-11 preparation time and optimize the automated synthesis system. By shortening the reaction time between 68Ga and the PSMA-11 precursor and adjusting the number of purification steps, a faster and more cost-effective method was tested while maintaining quality. The final synthesis time was reduced from 30 to 20 minutes, meeting the standards for the HEPES content, residual solvent EtOH content, and radiochemical purity. This optimized procedure minimizes radiation exposure for medical technicians, reduces patient wait times, and maintains consistent production schedules, making it suitable for clinical application.