• Title/Summary/Keyword: Ligand based approach

Search Result 28, Processing Time 0.024 seconds

Artificial Intelligence in the Pathology of Gastric Cancer

  • Sangjoon Choi;Seokhwi Kim
    • Journal of Gastric Cancer
    • /
    • v.23 no.3
    • /
    • pp.410-427
    • /
    • 2023
  • Recent advances in artificial intelligence (AI) have provided novel tools for rapid and precise pathologic diagnosis. The introduction of digital pathology has enabled the acquisition of scanned slide images that are essential for the application of AI. The application of AI for improved pathologic diagnosis includes the error-free detection of potentially negligible lesions, such as a minute focus of metastatic tumor cells in lymph nodes, the accurate diagnosis of potentially controversial histologic findings, such as very well-differentiated carcinomas mimicking normal epithelial tissues, and the pathological subtyping of the cancers. Additionally, the utilization of AI algorithms enables the precise decision of the score of immunohistochemical markers for targeted therapies, such as human epidermal growth factor receptor 2 and programmed death-ligand 1. Studies have revealed that AI assistance can reduce the discordance of interpretation between pathologists and more accurately predict clinical outcomes. Several approaches have been employed to develop novel biomarkers from histologic images using AI. Moreover, AI-assisted analysis of the cancer microenvironment showed that the distribution of tumor-infiltrating lymphocytes was related to the response to the immune checkpoint inhibitor therapy, emphasizing its value as a biomarker. As numerous studies have demonstrated the significance of AI-assisted interpretation and biomarker development, the AI-based approach will advance diagnostic pathology.

Prediction the efficacy and mechanism of action of Daehwangmokdanpitang to treat psoriasis based on network pharmacology (네트워크 약리학 기반 대황목단피탕(大黃牧丹皮湯)의 건선 조절 효능 및 작용 기전 예측)

  • Bitna Kweon;Dong-Uk Kim;Gabsik Yang; Il-Joo Jo
    • The Korea Journal of Herbology
    • /
    • v.38 no.6
    • /
    • pp.73-91
    • /
    • 2023
  • Objectives : This study used a network pharmacology approach to elucidate the efficacy and molecular mechanisms of Daehwangmokdanpitang (DHMDPT) on Psoriasis. Methods : Using OASIS databases and PubChem database, compounds of DHMDPT and their target genes were collected. The putative target genes of DHMDPT and known target genes of psoriasis were compared and found the correlation. Then, the network was constructed using Cytoscape 3.10.1. The key target genes were screened by Analyzer network and their functional enrichment analysis was conducted based on the Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathways to predict the mechanisms. Results : The result showed that total 30 compounds and 439 related genes were gathered from DHMDPT. 264 genes were interacted with psoriasis gene set, suggesting that the effects of DHMDPT are closely related to psoriasis. Based on GO enrichment analysis and KEGG pathways, 'Binding', 'Cytokine Activity', 'Receptor Ligand Activity' 'HIF-1 signaling pathway', 'IL-17 signaling pathway', 'Toll-like receptor signaling pathway', and 'TNF signaling pathway' were predicted as functional pathways of 16 key target genes of DHMDPT on psoriasis. Among the target genes, IL6, IL1B, TNF, AKT1 showed high correlation with the results of KEGG pathways. Additionally, Emodin, Acetovanillone, Gallic acid, and Ferulic acid showed a high relevance with key genes and their mechanisms. Conclusion : Through a network pharmacological method, DHMDPT was predicted to have high relevance with psoriasis. This study could be used as a basis for studying therapeutic effects of DHMDPT on psoriasis.

Identification and Pharmacological Analysis of High Efficacy Small Molecule Inhibitors of EGF-EGFR Interactions in Clinical Treatment of Non-Small Cell Lung Carcinoma: a Computational Approach

  • Gudala, Suresh;Khan, Uzma;Kanungo, Niteesh;Bandaru, Srinivas;Hussain, Tajamul;Parihar, MS;Nayarisseri, Anuraj;Mundluru, Hema Prasad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8191-8196
    • /
    • 2016
  • Inhibition of EGFR-EGF interactions forms an important therapeutic rationale in treatment of non-small cell lung carcinoma. Established inhibitors have been successful in reducing proliferative processes observed in NSCLC, however patients suffer serious side effects. Considering the narrow therapeutic window of present EGFR inhibitors, the present study centred on identifying high efficacy EGFR inhibitors through structure based virtual screening strategies. Established inhibitors - Afatinib, Dacomitinib, Erlotinib, Lapatinib, Rociletinib formed parent compounds to retrieve similar compounds by linear fingerprint based tanimoto search with a threshold of 90%. The compounds (parents and respective similars) were docked at the EGF binding cleft of EGFR. Patch dock supervised protein-protein interactions were established between EGF and ligand (query and similar) bound and free states of EGFR. Compounds ADS103317, AKOS024836912, AGN-PC-0MXVWT, GNF-Pf-3539, SCHEMBL15205939 were retrieved respectively similar to Afatinib, Dacomitinib, Erlotinib, Lapatinib, Rociletinib. Compound-AGN-PC-0MXVWT akin to Erlotinib showed highest affinity against EGFR amongst all the compounds (parent and similar) assessed in the study. Further, AGN-PC-0MXVWT brought about significant blocking of EGFR-EGF interactions in addition showed appreciable ADMET properties and pharmacophoric features. In the study, we report AGN-PC-0MXVWT to be an efficient and high efficacy inhibitor of EGFR-EGF interactions identified through computational approaches.

Theoretical Characterization of Binding Mode of Organosilicon Inhibitor with p38: Docking, MD Simulation and MM/GBSA Free Energy Approach

  • Gadhe, Changdev G.;Balupuri, Anand;Kothandan, Gugan;Cho, Seung Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2494-2504
    • /
    • 2014
  • P38 mitogen activated protein (MAP) kinase is an important anti-inflammatory drug target, which can be activated by responding to various stimuli such as stress and immune response. Based on the conformation of the conserved DFG loop (in or out), binding inhibitors are termed as type-I and II. Type-I inhibitors are ATP competitive, whereas type-II inhibitors bind in DFG-out conformation of allosteric pocket. It remains unclear that how these allosteric inhibitors stabilize the DFG-out conformation and interact. Organosilicon compounds provide unusual opportunity to enhance potency and diversity of drug molecules due to their low toxicity. However, very few examples have been reported to utilize this property. In this regard, we performed docking of an inhibitor (BIRB) and its silicon analog (Si-BIRB) in an allosteric binding pocket of p38. Further, molecular dynamics (MD) simulations were performed to study the dynamic behavior of the simulated complexes. The difference in the biological activity and mechanism of action of the simulated inhibitors could be explained based on the molecular mechanics/generalized Born surface area (MM/GBSA) binding free energy per residue decomposition. MM/GBSA showed that biological activities were related with calculated binding free energy of inhibitors. Analyses of the per-residue decomposed energy indicated that van der Waals and non-polar interactions were predominant in the ligand-protein interactions. Further, crucial residues identified for hydrogen bond, salt bridge and hydrophobic interactions were Tyr35, Lys53, Glu71, Leu74, Leu75, Ile84, Met109, Leu167, Asp168 and Phe169. Our results indicate that stronger hydrophobic interaction of Si-BIRB with the binding site residues could be responsible for its greater binding affinity compared with BIRB.

The Search of fig Pheromonal Odorants for Biostimulation Control System Technologies: I. Ligand Based Molecular Shape Similarity of 5$\alpha$-androst-16-en-3-one Analogous and Their Physicochemical Parameters (생물학적 자극 통제 수단으로서 활용하기 위한 돼지 페로몬성 냄새 물질의 탐색: I. 5$\alpha$-androst-16-en-3-one 유사체들의 리간드에 기초한 분자 유사성과 물리화학 파라미터)

  • 성낙도;김철호;진동일;박창식
    • Reproductive and Developmental Biology
    • /
    • v.28 no.1
    • /
    • pp.45-52
    • /
    • 2004
  • To search a new porcine pheromonal odorants, this research for biostimulation and role of pheromone was augmented by means of "control system technologies" to offer a potentially useful and practical way to improve reproductive efficiency in livestock species. Therefore the 13 physicochemical parameters such as similarity indice (S), hydrophobicity (logP) and van der Waals molecule volume (MV) etc. of 54 steroid analogues, which are analogous of substrate molecules, 5$\alpha$-androst-16-en-3-one (P1) and 5$\alpha$-androst-16-en-3-ol (P2) of lipocalin as receptor of pig pheromones were calculated and discussed. The physicochemical properties of these steroid analogues were mainly followed by steric dissimilar of A and D ring in steroid nucleus. And we found that from correlation with S values and MV constants of molecules, the more MV constants are small, the more S values tend to approach 1. Based on this results, the S-values of 4-androsten-3,17-dione (P1-1) and 5 $\alpha$ -androstan-3-one (P2-1) were 1.0, respectively. The two compounds of them were chosen because they showed the same value each other at a side of hydrophobicity, molar refractivity and molecular volume. It is expected that the new two compounds will be able to substitute for P1 and P2, porcine pheromonal odorants.

Studies on the Optical and the Electrical Characterization of Organic Electroluminescence Devices of Europium Complex Fabricated with PVD(Physical Vopor Deposition) Technique (진공 증착법에 의하여 제작한 Europium complex 유기 박막 전기발광소자의 광학적.전기적 특성에 관한 연구.)

  • Lee, Myeong-Ho;Lee, Han-Seong;Kim, Yeong-Gwan;Kim, Jeong-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.285-295
    • /
    • 1999
  • Electroluminescent(EL) devices based on organic materials have been of great interest due to their possible applications for large-area flat-panel displays. They are attractive because of their capability of multi-color emission, and low operation voltage. An approach to realize such device characteristics is to use active layers of lanthanide complexes with their inherent extremely sharp emission bands in stead of commonly known organic dyes. In general, organic molecular compounds show emission due to their $\pi$-$\pi*$ transitions resulting in luminescence bandwidths of about 80 to 100nm. Spin statistic estimations lead to an internal quantum efficiency of dye-based EL devices limited to 25%. On the contrary, the fluorescence of lanthanide complexes is based on an intramolecular energy transfer from the triplet of the organic ligand to the 4f energy states of the ion. Therefore, theoretical internal quantum efficiency is principally not limited. In this study, Powders of TPD, $Eu(TTA)_3(phen) and AlQ_3$ in a boat were subsequently heated to their sublimation temperatures to obtain the growth rates of 0.2~0.3nm/s. Organic electrolumnescent devices(OELD) with a structure of $glass substrate/ITO/Eu(TTA)_3(phen)/AI, glass substrate/ITO/TPD/Eu(TTA)_3(phen)/AI and glass substrate/ITO/TPD/Eu(TTA)_3(phen)/AIQ_3AI$ structures were fabricated by vacuum evaporation method, where aromatic diamine(TPD) was used as a hole transporting material, $Eu(TTA)_3(phen)$ as an emitting material, and Tris(8-hydroxyquinoline)Aluminum$(AlQ_3)$ as an electron transporting layer. Electroluminescent(EL) and current density-voltage(J-V) characteristics of these OELDs with various thickness of $Eu(TTA)_3(phen)$ layer were investigated. The triple-layer structure devices show the red EL spectrum at the wavelength of 613nm, which is almost the same as the photoluminescent(PL) spectrum of $Eu(TTA)_3(phen)$.It was found from the J-V characteristics of these devices that the current density is not dependent on the applied field, but on the electric field.

  • PDF

Modern diagnostic capabilities of neonatal screening for primary immunodeficiencies in newborns

  • Khalturina, Evgenia Olegovna;Degtyareva, Natalia Dmitrievna;Bairashevskaia, Anastasiia Vasi'evna;Mulenkova, Alena Valerievna;Degtyareva, Anna Vladimirovna
    • Clinical and Experimental Pediatrics
    • /
    • v.64 no.10
    • /
    • pp.504-510
    • /
    • 2021
  • Population screening of newborns is an extremely important and informative diagnostic approach that allows early identification of babies who are predisposed to the development of a number of serious diseases. Some of these diseases are known and have effective treatment methods. Neonatal screening enables the early diagnosis and subsequent timely initiation of therapy. This helps to prevent serious complications and reduce the percentage of disability and deaths among newborns and young children. Primary immunodeficiency diseases and primary immunodeficiency syndrome (PIDS) are a heterogeneous group of diseases and conditions based on impaired immune system function associated with developmental defects and characterized by various combinations of recurrent infections, development of autoimmune and lymphoproliferative syndromes (genetic defects in apoptosis, gene mutation Fas receptor or ligand), granulomatous process, and malignant neoplasms. Most of these diseases manifest in infancy and lead to serious illness, disability, and high mortality rates. Until recently, it was impossible to identify children with PIDS before the onset of the first clinical symptoms, which are usually accompanied by complications in the form of severe coinfections of a viral-bacterial-fungal etiology. Modern advances in medical laboratory technology have allowed the identification of children with severe PIDS, manifested by T- and/or B-cell lymphopenia and other disorders of the immune system. This review discusses the main existing strategies and directions used in PIDS screening programs for newborns, including approaches to screening based on excision of T-cell receptors and kappa-recombination excision circles, as well as the potential role and place of next-generation sequencing technology to increase the diagnostic accuracy of these diseases.

The Relationship between Intracellular Protein Kinase C Concentration and Invasiveness in U-87 Malignant Glioma Cells (교모세포종 세포주 U-87에서 세포내 PKC 농도와 종양침습성과의 상관 관계)

  • Ji, Cheol;Cho, Kyung-Keun;Lee, Kyung Jin;Park, Sung Chan;Cho, Jung Ki;Kang, Joon Ki;Choi, Chang Rak
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.3
    • /
    • pp.263-271
    • /
    • 2001
  • Objective : Glioblastomas, the most common type of primary brain tumors, are highly invasive and cause massive tissue destruction at both the tumor invading edges and in areas that are not in direct contact with glioma cells. As a result, patients with high-grade gliomas are faced with a poor prognosis. Such grim statistics emphasize the need to better understand the mechanisms that underlie glioma invasion, as these may lead to the identification of novel targets in the therapy of high grade gliomas. Protein kinase C(PKC) is a family of serine/threonine kinases and an important signal transduction enzyme that conveys signals generated by ligand-receptor interaction at the cell surface to the nucleus. PKC appears to be critical in regulating many aspects of glioma biology. The purpose of this study was to assess accurately the role of PKC in the invasion regulation of human gliomas based on hypothesis that protein kinase C(PKC) is functional in the process of glial tumor cell invasion. Method : To test this hypothesis, U-87 malignant glioma cell line intracellular PKC levels were up and down regulated and their invasiveness was tested. Intracellular PKC level was characterized using PKC activity assays. Invasion assays including barrier migration and spheroid confrontation were used to study the relationship between PKC concentration and invasiveness. Result : The cell line which were treated by PKC inhibitor tamoxifen and hypericin exhibited decreased PKC activity and decreased invasive abilities dose dependently both in matrigel invasion assay and tumor spheroid fetal rat brain aggregates(FRBA) confrontation assay. However, the cell line that was treated by PKC activator 12-O-tetradecanylphorbol-13acetate(TPA) did not exhibit increases in either PKC activity or invasive ability. Conclusion : These studies suggest that PKC may be a useful molecular target for the chemotherapy of glioblastoma and other malignancies and that a therapeutic approach based on the ability of PKC inhibitors may be helpful in preventing invasion.

  • PDF