• Title/Summary/Keyword: Liftoff

Search Result 68, Processing Time 0.022 seconds

Nonlinear Aseismic Analysis of Spent Fuel Storage Racks(I) (핵폐기물 저장설비의 비선형 내진해석(I))

  • Lee, Chong-Dong;Chang, Jae-Wan;Yoo, Bong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.191-198
    • /
    • 1993
  • This paper presents the analysis briefs to evaluate the structural adequacy of the KMRR spent fuel storage racks which stack modules in three layers. The seismic analysis models are idealized to consider the overall dynamic motions such as rocking, sliding and liftoff in the event of an postulated earthquake. The displacement time histories of the floor obtained from the floor response spectra in three orthogonal directions are simultaneously applied to the nonlinear seismic model of the structure with gap and friction elements.

  • PDF

Characteristics of Autoignited Laminar Lifted Flames in Heated Coflow Jets of Carbon Monoxide/Hydrogen Mixtures (일산화탄소/수소 혼합기의 가열된 동축류 제트에서 자발화된 층류 부상화염의 특성)

  • Choi, Byung-Chul;Chung, Suk-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.6
    • /
    • pp.639-646
    • /
    • 2012
  • The characteristics of autoignited lifted flames in laminar jets of carbon monoxide/hydrogen fuels have been investigated experimentally in heated coflow air. In result, as the jet velocity increased, the blowoff was directly occurred from the nozzle-attached flame without experiencing a stabilized lifted flame, in the non-autoignited regime. In the autoignited regime, the autoignited lifted flame of carbon monoxide diluted by nitrogen was affected by the water vapor content in the compressed air oxidizer, as evidenced by the variation of the ignition delay time estimated by numerical calculation. In particular, in the autoignition regime at low temperatures with added hydrogen, the liftoff height of the autoignited lifted flames decreased and then increased as the jet velocity increased. Based on the mechanism in which the autoignited laminar lifted flame is stabilized by ignition delay time, the liftoff height can be influenced not only by the heat loss, but also by the preferential diffusion between momentum and mass diffusion in fuel jets during the autoignition process.

Characteristics of Stabilization Point in Lifted Turbulent Hydrogen Diffusion Jet with Coaxial Air (부상된 동축공기 수소 난류확산화염에서의 화염안정화 특성)

  • Oh, Jeong-Seog;Kim, Mun-Ki;Yoon, Young-Bin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.352-356
    • /
    • 2008
  • In this study of lifted hydrogen jet with coaxial air, we have experimentally studied the characteristics of stabilization point in turbulent diffusion flames. The objectives are to present the phenomenon of a liftoff height decreasing as increasing fuel velocity and to analyse the flame structure and behavior including liftoff mechanisms. The fuel jet exit velocity was changed from 100 up to 300 m/s and a coaxial air velocity was fixed at 16 m/s with a coflow air less than 0.1 m/s. For the simultaneous measurement of velocity field and reaction zone, PIV and OH PLIF technique was used with two Nd:Yag lasers and CCD cameras. It has been suggested that the stabilization of lifted hydrogen diffusion flames was correlated with a turbulent intensity, $S_t{\sim}u^{\prime}$, and jet Reynolds number, $S_t{\sim}Re^{0.017}_{jet}$.

Effect of AC Electric Field on Decreasing Liftoff Height in Laminar Lifted Jet Flames (층류 부상 화염의 화염부상 높이 감소 구간에서 교류 전기장이 인가된 화염에 관한 영향)

  • Seo, B.H.;Van, K.H.;Kim, G.T.;Park, J.;Keel, S.I.;Kim, S.W.;Chung, S.H.
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.3
    • /
    • pp.17-22
    • /
    • 2017
  • An experimental study has been conducted to elucidate the effect of AC electric field on behaviors of laminar lifted flame in nitrogen-diluted methane coflow-jets. Our concerns are focued on the regime to show a decrease in liftoff height, $H_L$ with increasing nozzle exit velocity, $U_O$ (hereafter, $decreasing-H_L$). The $H_L$ with $U_O$ near flame extinction were measured by varying the applied AC voltage, $V_{AC}$ and frequency, $f_{AC}$ in a single electrode configuration. The behavior of $H_L$ with a functional dependency of $V_{AC}$ and $f_{AC}$ was categorized into two regime : (I) $H_L$ decreased for nozzle diameter, D = 1.0 mm, and (II) $H_L$ increased in the increase of $f_{AC}$ for a fixed $V_{AC}$ in a D = 4.0, 8.4 mm. The lifted flames in $decreasing-H_L$ region was unstable in high voltage regimes while the $H_L$ showed a decreasing tendency with $U_O$ except them. Such behaviors in $H_L$ were also characterized by functional dependencies of related physical parameters such as $V_{AC}$, $f_{AC}$, $U_O$, fuel mole fraction ($X_{F.O}$) and D.

Effect of Ignition Delay Time on Autoignited Laminar Lifted Flames (자발화된 층류 부상화염에 대한 점화지연시간의 영향)

  • Choi, Byung-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1025-1031
    • /
    • 2011
  • Autoignition characteristic is an important parameter for designing diesel or PCCI engines. In particular, diesel spray flames are lifted from the nozzle and the initial flame is formed by an autoignition phenomenon. The lifted nature of diesel spray flames influences soot formation, since air will be entrained into the spray core by the entrainment of air between the nozzle region and the lifted flame base. The objective of the present study was to identify the effect of heat loss on the ignition delay time by adopting a coflow jet as a model problem. Methane ($CH_4$), ethylene ($C_2H_4$), ethane ($C_2H_6$), propene ($C_3H_6$), propane ($C_3H_8$), and normal butane (n-$C_4H_{10}$) fuels were injected into high temperature air, and the liftoff height was measured experimentally. As the result, a correlation was determined between the liftoff height of the autoignited lifted flame and the ignition delay time considering the heat loss to the atmosphere.

Nitrogen Dilution Effects on Liftoff Flame Stability in Non-premixed Turbulent Hydrogen Jet with Coaxial Air (질소희석이 부상된 수소 난류확산화염의 화염안정성에 미치는 영향)

  • Oh, Jeong-Seog;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.393-396
    • /
    • 2008
  • The study of nitrogen dilution effect on flame stability was experimentally investigated in non-premixed turbulent lifted hydrogen jet with coaxial air. hydrogen gas was used as a fuel and coaxial air was injected to make flame liftoff. And both of the fuel jet and coaxial air velocity were fixed as $u_F$=200 m/s and $u_A$=16 m/s, while nitrogen diluents mole fraction was varied from 0 to 0.2. For the analysis of flame structure and flame stabilization mechanism, the simultaneous measurement of PIV/OH PLIF had been performed. It was found that the turbulent flame propagation velocity increased as decreasing of nitrogen mole fraction. We concluded that the turbulent flame propagation velocity was expressed as a function of turbulent intensity, even though the mole fraction of nitrogen diluents gas was changed.

  • PDF

Study on the Turbulent Edge Propagation Speed of a Lifted Diffusion Flame in Turbulent Mixing Layer (난류 혼합층 확산화염에서 부상선단의 난류전파속도에 대한 연구)

  • Kim, Jun-Hong;Chung, S.H.;Ahn, K.Y.;Kim, J.S.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.55-61
    • /
    • 2004
  • Leading front of a lifted diffusion flame in turbulent mixing layer was investigated in order to find a appropriate definition of the turbulent edge propagation speed. The turbulent lifted diffusion flame was simulated by employing the flame hole dynamics combined with level-set method which yields a temporally evolving turbulent extinction process. By tracing the leading front locations of the temporal flame edges, temporal variations of the liftoff height, local flow velocity, and edge propagation speed at the leading front were investigated and they demonstrated the flame-stabilization condition of the turbulent lifted flame. Finally, a turbulent edge propagation speed was defined and its temporal variation from the simulation was discussed.

  • PDF

NUMERICAL MODELING FOR FLAME STABILIZATION OF GAS TURBINE COMBUSTOR (가스터빈 엔진의 화염안정성에 대한 수치모델링)

  • Kang Sungmo;Kim Yongmo;Chung Jae-Hwa;Ahn Dal-Hong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.201-206
    • /
    • 2005
  • In order to realistically represent the complex turbulence-chemistry interaction at the partially premixed turbulent lifted flames encountered in the gas turbine combustors, the combined conserved-scalar/level-set flamelet approach has been adopted. The parallel unstructured-grid finite-volume method has been developed to maintain the geometric flexibility and computational efficiency for the solution of the physically and geometrically complex flows. Special emphasis is given to the swirl effects on the combustion characteristics of the lean-premixed gas turbine combustor. Numerical results suggest that the present approach is capable of realistically simulating the combustion characteristics for the lean-premixed gas turbine engines and the lifted turbulent jet flame with a vitiated coflow.

  • PDF

The Stability of Turbulent Interacting Flames (다수 난류 비예혼합 화염의 상호작용에 관한 연구)

  • Kim, Jin-Sun;Lee, Byeong-Jun
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.453-458
    • /
    • 2001
  • The stability of turbulent nonpremixed interacting flames is investigated in terms of nozzle configuration shapes which depend on the existence of the center nozzles. Six nozzle arrangements which are cross 4, 5, 8, 9, square 8 and circular 8 nozzles are used for the experiment. Those are arranged to see the effect of the center nozzle out of multi-nozzle. There are many parameters that affect flame stability in multi-nozzle flame such as nozzle separation distance, fuel flowrates and nozzle configuration, but the most important factor is the existence of nozzles in the center area from the nozzle arrangement. As the number of nozzle in the area is reduced, more air can be entrained into the center of flame base and then tag flame is formed. In the case of circular 8 nozzles, blowout flowrates are above 5.4 times compared with that of single equivalent area nozzle.

  • PDF

HIGH-ENERGY SOLAR PARTICLE EVENTS IN THREE DIMENSIONS

  • Kocharov, Leon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.45.1-45.1
    • /
    • 2010
  • Using SOHO particle and EUV detection and radio spectrograms from both ground-based and spaceborne instruments, we have studied the first phase of major solar energetic particle (SEP) events associated with wide and fast coronal mass ejections (CMEs) centered at different solar longitudes. Observations support the idea that acceleration of SEPs starts in the helium-rich plasma of the eruption's core well behind the CME leading edge, in association with coronal shocks and magnetic reconnection caused by the CME liftoff; and those "coronal" components dominate during the first ~1.5 hour of the SEP event, not yet being hidden by the CME-bow shock in solar wind. At magnetic connection to the eruption's periphery, onset of SEP emission is delayed for a time of the lateral expansion that is visualized by global coronal (EIT) wave. The first, "coronal" phase of SEP acceleration is followed by a second phase associated with CME-driven shock wave in solar wind, which accelerates high-energy ions from a helium-poor particle population until the interplanetary shock slows down to below 1000 km/s. Based on these and other SOHO observations, we discuss what findings can be expected from STEREO in the SOHO era perspective.

  • PDF