• Title/Summary/Keyword: Lifting loads

Search Result 59, Processing Time 0.027 seconds

Prediction of Peak Back Compressive Forces as a Function of Lifting Speed and Compressive Forces at Lift Origin and Destination - A Pilot Study

  • Greenland, Kasey O.;Merryweather, Andrew S.;Bloswick, Donald S.
    • Safety and Health at Work
    • /
    • v.2 no.3
    • /
    • pp.236-242
    • /
    • 2011
  • Objectives: To determine the feasibility of predicting static and dynamic peak back-compressive forces based on (1) static back compressive force values at the lift origin and destination and (2) lifting speed. Methods: Ten male subjects performed symmetric mid-sagittal floor-to-shoulder, floor-to-waist, and waist-to-shoulder lifts at three different speeds (slow, medium, and fast), and with two different loads (light and heavy). Two-dimensional kinematics and kinetics were captured. Linear regression analyses were used to develop prediction equations, the amount of predictability, and significance for static and dynamic peak back-compressive forces based on a static origin and destination average (SODA) backcompressive force. Results: Static and dynamic peak back-compressive forces were highly predicted by the SODA, with R2 values ranging from 0.830 to 0.947. Slopes were significantly different between slow and fast lifting speeds (p < 0.05) for the dynamic peak prediction equations. The slope of the regression line for static prediction was significantly greater than one with a significant positive intercept value. Conclusion: SODA under-predict both static and dynamic peak back-compressive force values. Peak values are highly predictable and could be readily determined using back-compressive force assessments at the origin and destination of a lifting task. This could be valuable for enhancing job design and analysis in the workplace and for large-scale studies where a full analysis of each lifting task is not feasible.

A computation model for Resource-based Lifting loads of the lift-cars for super high-rise buildings (초고층 건축물 리프트카 양중계획수립을 위한 자원기반의 양중부하 산정 모형)

  • Han, Choong-Hee;Lee, Jun-Bok;Won, Seo-Kyung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.5
    • /
    • pp.135-143
    • /
    • 2012
  • Constructing super-tall buildings is significantly different from constructing general ones in every technological and managerial aspects. Especially lift-car operations planning and management is one of core parts among various management techniques required during the course of the whole construction process of the super-tall buildings because vertical movements of physical resources enormously affect the efficiency of the construction processes. However, discrepancy between lifting plans and actual lifting operations causes serious efficiency problems. As an effort to solve the problem, this research suggests an improved method of estimating resource-based lifting load. The computing model developed as a result of this research facilitates more accurate computation of the total operation time and the maximum lifting capacity of the lift-cars. Further, this research can be developed as a decision support system for the total lift-car operations management.

A Study on Wire-rope Type Furnace Scaffolding and Its Lifting System for Large-sized Boiler (대형 보일러 와이어로프 노내비계 및 인양시스템에 관한 연구)

  • HA, Seung Woo;Lee, Tae Ho;Lee, Hae Seung;Kim, Jeung Min;You, Tai Woo;Cho, Sun Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.7
    • /
    • pp.679-683
    • /
    • 2016
  • Boilers of large-sized coal-fired power plants are being operated under very poor conditions such as continuous operation or repeating of start-up and shutdown for a stable supply of electricity. Thus periodic inspection and maintenance are required to ensure reliability of operation. The loads of existing scaffolding systems for the maintenance of boilers are concentrated in the lower parts structurally, which may cause a serial collapse of the overall scaffolding system when there are problems in some members. Therefore, in this study, a safe furnace scaffolding system is developed by dispersing the loads in the upper part, as well as minimizing the hazards of serial collapsing. In addition, for cases where the direct installation of furnace scaffolding is challenging owing to the structure of the boiler tube, a lifting system for the installation of furnace scaffolding is developed so that furnace scaffolding can be supported to secure the integrity of the power generating facility.

Hydraulic Cylinder Design of Lifting Pump Mounting and Structural Safety Estimation of Mounting using Multi-body Dynamics (다물체 동역학을 이용한 양광펌프 거치대의 유압 실린더 설계 및 구조 안전성 평가)

  • Oh, Jae-Won;Min, Cheon-Hong;Lee, Chang-Ho;Hong, Sup;Kim, Hyung-Woo;Yeu, Tae-Kyung;Bae, Dae-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.120-127
    • /
    • 2015
  • When a deep-seabed lifting pump is kept this device has bending and deformation in the axis due to its long length(8m). These influences can be caused a breakdown. Therefore, a mounting must be developed to keep the lifting pump safe. This paper discusses the hydraulic cylinder design of the lifting pump and structural safety estimation of the mounting using SBD(simulation-based design). The multi-body dynamic simulation method is used, which has been used in the automotive, structural, ship building, and robotics industries. In this study, the position and diameter of the hydraulic cylinder were determined based on the results of the strokes and buckling loads for the design positions of the hydraulic cylinder. A structural dynamic model of the mounting system was constructed using the determined design values, and the structural safety was evaluated using this dynamic model. According to these results, this system has a sufficient safety factor to manufacture.

Comprehensive Aeromechanics Predictions on Air and Structural Loads of HART I Rotor

  • Na, Deokhwan;You, Younghyun;Jung, Sung N.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.165-173
    • /
    • 2017
  • The aeromechanics predictions of HART I rotor obtained using a computational structural dynamics (CSD) code are evaluated against the wind tunnel test data. The flight regimes include low speed descending flight at an advance ratio of ${\mu}=0.151$ and cruise condition at ${\mu}=0.229$. A lifting-line based unsteady airfoil theory with C81 table look-up is used to calculate the aerodynamic loads acting on the blade. Either rolled-up free wake or multiple-trailer wake with consolidation (MTC) model is employed for the free vortex wake representation. The measured blade properties accomplished recently are used to analyze the rotor for the up-to-date computations. The comparison results on airloads and structural loads of the rotor show good agreements for descent flight and fair for cruise flight condition. It is observed that MTC model generally improves the correlation against the measured data. The structural loads predictions for all measurement locations of HART I rotor are investigated. The dominant harmonic response of the structural loads is clearly captured with MTC model.

Analysis of Structural Characteristics of HDPE Pipe for Manganese Lifting Test (근해역 양광시험을 위한 HDPE Pipe의 구조특성 연구)

  • Lee, Jae-Hwan;Yoon, Chi-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.86-90
    • /
    • 2011
  • The mining of imitated manganese noodles in 1000 m of seawater is planned for 2012. Thus, it is necessary to prepare the lifting pipes to be used for the test. Because of storage and expense constraints, flexible and economic HDPE pipe is being considered, making it necessary to test the structural safety. Material, pressure-chamber tests and finite element analysis of HDPE pipe for the 1000-m depth were performed. The tangential stiffness of HDPE was obtained through tension and three-point bending material tests and used for a structural analysis. FEA results show that the current sample pipe segment is safe for 1000 m of water pressure, and the stress result is also within the safe value. From the current results, the HDPE pipe seems to be acceptable only for the currently suggested constraints. However, more numerical and pressure tests need to be considered by applying additional physical conditions such as gravitational and hydrodynamic loads, external and internal fluid pressure, axial force induced ship motion, and heavy pump pressure to determine future usage.

A Study on the Supply Process of Unit Modular Housing through a Comparison of Cases

  • Kim, Kyoon-Tai;Jun, Young-Hun;Kim, Tae-Yeong
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.411-414
    • /
    • 2015
  • The purpose of this study is to conduct a comparative analysis between Korea and the United States of the supply process of unit modular housing at both the factory production phase and the transportation and lifting phase, as part of an attempt to invigorate the unit modular housing market in Korea. Unlike the practice in the United States, one of Korea's unique characteristics is that the floor is constructed with reinforced concrete and hot water heating system. To do this, the wet method in Korea is used that includes concrete placement, curing and constructing hot water floor heating system at the factory production phase, which results in a longer production time and also requires the lifting of heavier loads. In the United States, interior and exterior finishing works of modular housing are performed by different companies, and the distance between the unit module factory and the construction site is quite far. This kind of dualized production structure may cause confusion when it comes to schedule management, procurement management, and stock management. Moreover, problems caused by external environmental factors such as wind and rainfall were reported in the course of long-distance transportation. The results of this case comparison are expected to provide fundamental data that will reduce the amount of trial and error in the unit module production, transportation and lifting work in Korea, which has a comparatively small number of unit modular housing cases.

  • PDF

Propeller Skew Optimization Considering Varying Wake Field (선체반류를 고려한 프로펠러 최적 스큐화)

  • 문일성;김건도;유용완;류민철;이창섭
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.5
    • /
    • pp.26-35
    • /
    • 2003
  • Propellers operating in a given nonuniform ship wake generate unsteady loads leading to undesirable stern vibration problems. The skew is known to be the most proper and effective geometric parameter to control or reduce the fluctuating forces on the shaft. This paper assumes the skew profile as either a quadratic or a cubic function of the radius and determines the coefficients of the polynomial function by applying the simplex method. The method uses the converted unconstrained algorithm to solve the constrained minimization problem of 6-component shaft excitation forces. The propeller excitation was computed either by applying the two-dimensional gust theory for quick estimation or by the fully three-dimensional unsteady lifting surface theory in time domain for an accurate solution. A sample result demonstrates that the shaft forces can be further reduced through optimization from the original design.

Development of a Model for Physiological Safe Work Load from a Model of Metabolic Energy for Manual Materials Handling Tasks (에너지 대사량을 고려한 인력물자취급시의 생리적 안전 작업하중 모델 개발)

  • Kim Hong-Ki
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.3
    • /
    • pp.90-96
    • /
    • 2004
  • The objective of this study was to develop a model for safe work load based on a physiological model of metabolic energy of manual material handling tasks. Fifteen male subjects voluntarily participated in this study. Lifting activities with four different weights, 0, 8, 16, 24kg, and four different working frequencies (2, 5, 8, 11 lifts/min) for a lifting range from floor to the knuckle height of 76cm were considered. Oxygen consumption rates and heart rates were measured during the performance of sixteen different lifting activities. Simplified predictive equations for estimating the oxygen consumption rate and the heart rate were developed. The oxygen consumption rate and the heart rate could be expressed as a function of task variables; frequency and the weight of the load, and a personal variable, body weight, and their interactions. The coefficients of determination ($r^2$) of the model were 0.9777 and 0.9784, respectively, for the oxygen consumption rate and the heart rate. The model of oxygen consumption rate was modified to estimate the work load for the given oxygen consumption rate. The overall absolute percent errors of the validation of this equation for work load with the original data set was 39.03%. The overall absolute percent errors were much larger than this for the two models based on the US population. The models for the oxygen consumption rate and for the work load developed in this study work better than the two models based on the US population. However, without considering the biomechanical approach, the developed model for the work load and the two US models are not recommended to estimate the work loads for low frequent lifting activities.

Tribological Induced Dynamic Characteristics Analysis of HDD Slider-Suspension Assembly (트라이볼로지 문제를 고려한 하드 디스크 슬라이더-서스펜션의 동특성 해석)

  • 김청균;차백순
    • Tribology and Lubricants
    • /
    • v.17 no.1
    • /
    • pp.64-71
    • /
    • 2001
  • This paper presents dynamic responses of disk flutter and bump in HDD slider. The slider is modeled for three degree-of-freedom systems, which are capable of lifting, pitching, and rolling motions. In numerical analysis, loads from air pressure, preload and static moments from the slider, and stiffness and damping coefficients of the suspension are considered for investigating the dynamic characteristics analysis. The numerical results are presented as functions of typical parameters such as a disk velocity, stiffness and damping coefficients of the suspension, and skew angle.