• Title/Summary/Keyword: Lifting force

Search Result 160, Processing Time 0.028 seconds

Force Arrow: An Efficient Pseudo-Weight Perception Method

  • Lee, Jun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.7
    • /
    • pp.49-56
    • /
    • 2018
  • Virtual object weight perception is an important topic, as it heightens the believability of object manipulation in immersive virtual environments. Although weight perception can be achieved using haptic interfaces, their technical complexity makes them difficult to apply in immersive virtual environments. In this study, we present a visual pseudo-haptic feedback system that simulates and depicts the weights of virtual objects, the effect of which is weight perception. The proposed method recognizes grasping and manipulating hand motions using computer vision-based tracking methods, visualizing a Force Arrow to indicate the current lifting forces and its difference from the standard lifting force. With the proposed Force Arrow method, a user can more accurately perceive the logical and unidirectional weight and therefore control the force used to lift a virtual object. In this paper, we investigate the potential of the proposed method in discriminating between different weights of virtual objects.

Development of a hydraulic power transmission system for the 3-point hitch of 50-kW narrow tractors

  • Chung, Sun-Ok;Kim, Yong-Joo;Choi, Moon-Chan;Lee, Kyu-Ho;Ha, Jong-Kyou;Kang, Tae-Kyoung;Kim, Young-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.3
    • /
    • pp.450-458
    • /
    • 2016
  • High performance small and mid-sized tractors are required for dryland and orchard operations. A power transmission system is the most important issue for the design of high performance tractors. Many operations, such as loading and lifting, use hydraulic power. In the present study, a hydraulic power transmission system for the 3-point hitch of a 50 kW narrow tractor was developed and its performance was evaluated. First, major components were designed based on target design parameters. Target operations were spraying, weeding, and transportation. Main design parameters were determined through mathematical calculation and computer simulation. The capacity of the hydraulic cylinder was calculated taking the lifting force required for the weight of the implements into consideration. Then, a prototype was fabricated. Major components were the lifting valve, hydraulic cylinder, and 3-point hitch. Finally, performance was evaluated through laboratory tests. Tests were conducted using load weights, lift arm sensor, and lift arm height from the ground. Test results showed that the lifting force was in the range of 23.5 - 29.4 kN. This force was greater than lifting forces of competing foreign tractors by 3.9 - 4.9 kN. These results satisfied the design target value of 20.6 kN, determined by survey of advanced foreign products. The prototype will be commercialized after revision based on various field tests. Improvement of reliability should be also achieved.

A Study on the Optimization of Lifting Lug for Block Erection (선박 블럭 탑재용 러그 구조 최적화 연구)

  • Min, Dug-Ki;Eum, Sung-Min
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.82-89
    • /
    • 2011
  • In general, a number of lifting lugs have been used in shipbuilding industry and the D-type lugs are mainly used. The aim of this paper is to increase the cycle of the use and to reduce the size of lifting lugs to introduce lightweight shackle. In this study, nonlinear elasto-plastic analysis has been performed to confirm the ultimate strength of lifting lugs. In order to evaluate the proper design-load distribution around lug eye, the contact force between lifting lug and shackle pin has been realized by gab element model. Gap element modeling and nonlinear analysis are carried out using the finite element program MSC/PATRAN & ABQUS. Additionally the ultimate strength tests were performed to verify the structural adequacy of newly designed lifting lug and to insure safety of it. The D-10, 15, 20 & 40 ton models which are mainly used in the block erection are selected in the strength test. According to the results of the analysis and strength test, the ultimate strength of the newly designed lifting lugs has been estimated to exceed 3 times of design working load.

  • PDF

Comparison of Three Existing Methods for Predicting Compressive Force on the Lumbosacral Disc (들기작업 설계와 평가를 위한 요천추의 Compressive Force 예측모형 비교연구)

  • Kee, Do-Hyung;Chung, Min-K.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.4
    • /
    • pp.581-591
    • /
    • 1995
  • The main objective of this study is to compare three representative methods predicting compressive forces on lumbosacral disc : LP-based method, double LP-based method and EMG-assisted method. Two subjects simulated lifting tasks performed in the refractories industry, in which vertical and horizontal distance, and weight of load were varied. To calculate the L5/S1 compressive forces, EMG signals from six trunk muscles were measured and postural data and locations of load were recorded using the Motion Analysis System. The EMG-assisted model was shown to reflect well all three factors considered here. On the other hand, the compressive forces of the LP-based model and the double LP-based model were only significantly affected by weight of load. In addition, lowly positive correlation was observed between compressive forces of the EMG-assisted model and lifting index(LI) of 1991 NIOSH lifting equation. From this results, it can be concluded that compressive forces on L5/S1 by the EMG-assisted method should be used as biomechanical criterion in order to evaluate risk of jobs precisely, and LI can not evaluate risk of lifting tasks fully.

  • PDF

Analytical Research of Topside Installation in Mating phase with Crane Vessel

  • Lee, Jong-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.1-6
    • /
    • 2011
  • The installation of a topside structure can be categorized into the following stages: start, pre-lifting, lifting, lifted, rotating, positioning, lowering, mating, and end of installation. The transfer of the module onto the floating spar hull occurs in the last three stages, from lowering to the end. The coupled multi-body motions are calculated in both calm water and in irregular waves with a significant wave height (1.52m). The effects of the hydrodynamic interactions between the heavy lifting vessel and the spar hull during the lowering and mating stages are considered. The internal forces caused by the load transfer and ballasting are derived for the mating phases. The results of the internal forces for the calm water condition are compared with those in the irregular sea condition. Although the effect of the pitch motion on the relative vertical motion between the deck of the floating structure and the topside module is significant in the mating phases, the internal force induced pitch motion is too small to have this influence. However, the effect of the internal force on the wave-induced heave responses in the mating phases is noticeable in the irregular sea condition because transfer mass-induced draught changes for the floating structure are observed to have higher amplitudes than the external force induced responses. The impacts of the module on the spar hull in the mating phase are investigated.

An Approach to Ergonomics Evaluation of Grip Strength - Case by the Manual Lifting - (악력의 인간공학적 평가를 위한 접근 방법 -들기 작업 자세의 경우-)

  • Yang, S.H.;Kal, W.M.;Park, P.
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.209-213
    • /
    • 1997
  • Manual lifting techniques are commonly defined in terms of the postures adopted at the start of the lift. Quantitative definition is problematic, however, because the absolute joint angles adopted to lift an object are influenced by task parameters, such as the initial height of the load. The main objective of this study is to investigate the grip strength of the both hands at the initial lifting points. The survey is conducted by measuring the compression force, anthropometric data and grip strength at the lifting postures for the subjects(n=50) who is assigned to their job as usual. The experiment is peformed at the four lifting postures which involving the combination of two horizontal factors(H1 : 35 cm, H2 : 55 cm) and two vertical factors(V1 : 20~80 cm, V2 : 47~102 cm). The analysis result of lifting posture indicated that each H1-V1, H2-V1 combinations are about 60$^{\circ}$ and each H1-V2, H2-V2 combinations are about $30^{\circ}$. There are significant differences on grip strength between $60^{\circ}$ and $30^{\circ}$ stooped posture. The results of this study can be provided a method defining lifting postures at the minimum grip strength. Also, it is eliminated a hazard of the injuries which are cumulative trauma disorders(CTDs) and back pain, increased a productivity and improved a welfare of workers.

  • PDF

The Effect of Lifting Speed on Cumulative and Peak Biomechanical Loading for Symmetric Lifting Tasks

  • Greenland, Kasey O.;Merryweather, Andrew S.;Bloswick, Donald S.
    • Safety and Health at Work
    • /
    • v.4 no.2
    • /
    • pp.105-110
    • /
    • 2013
  • Background: To determine the influence of lifting speed and type on peak and cumulative back compressive force (BCF) and shoulder moment (SM) loads during symmetric lifting. Another aim of the study was to compare static and dynamic lifting models. Methods: Ten male participants performed a floor-to-shoulder, floor-to-waist, and waist-to-shoulder lift at three different speeds [slow (0.34 m/s), medium (0.44 m/s), and fast (0.64 m/s)], and with two different loads [light (2.25 kg) and heavy (9 kg)]. Two-dimensional kinematics and kinetics were determined. A three-way repeated measures analysis of variance was used to calculate peak and cumulative loading of BCF and SM for light and heavy loads. Results: Peak BCF was significantly different between slow and fast lifting speeds (p < 0.001), with a mean difference of 20% between fast and slow lifts. The cumulative loading of BCF and SM was significantly different between fast and slow lifting speeds (p < 0.001), with mean differences ${\geq}80%$. Conclusion: Based on peak values, BCF is highest for fast speeds, but the BCF cumulative loading is highest for slow speeds, with the largest difference between fast and slow lifts. This may imply that a slow lifting speed is at least as hazardous as a fast lifting speed. It is important to consider the duration of lift when determining risks for back and shoulder injuries due to lifting and that peak values alone are likely not sufficient.

Study of Microrobot formed the Wing of a Insect (곤충 날개를 형상화한 마이크로로봇의 연구)

  • 김종걸;이건영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.424-424
    • /
    • 2000
  • The implementation of a insect-based flying microrobot has been previously proposed as using magnetic force. The flying principle of a butterfly is different from that of a airplane, which obtain lifting force above the wings by a air stream with low pressure. Butterflies obtain lifting force below the wings by flapping. They can fly when drag during the down stroke is greater that during the up stroke. The structure of flying microrobot must satisfy these condition. And that must be manufacture lightly and keep balance for rising to the air sufficiently. Moreover the efficiency of an electromagnet is high and the flux density is sustained uniformly and widely Nevertheless these condition is satisfied, the implementation of a flying microrobot is very difficult as the flying microrobot has to fly without guides or sensor. We propose differently a new model il] comparison with that other paper has suggested. This imitates the form of the Korean shield-shaped kite.

A Study on the Work-related Low Back Pain of Workers at a Refractories Manufacturing Factory (모 연와제조 공장 근로자의 작업과 관련된 요통 및 대책에 관한 연구)

  • Cheong, Hoe Kyeong;Lim, Hyun Sul;Kim, Ji Yong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.7 no.2
    • /
    • pp.289-297
    • /
    • 1997
  • Work-related low back pain(below LBP) is one of the major cause of morbidity, disability, limitation of activity and economic loss. Therefore the work-related LBP is one of the major issue in the field of industrial safety and health. This study was performed for detecting the risk factors and proposing the effective control programs of work-related LBP. The subjects were male workers employed at the welding and metal factory. The data was collected by self-reported questionnaire, interview and checking abdomen muscular and grasping power for two days on October, 1993. The contents of questionnaire were as follow: the experience of LBP, general characteristics, physical characteristics, employment status, type of work and working environment. The number of cases was 104 with a history of work-related LBP, so the prevalence of work-related LBP was 35.0%, and the number of controls was 140 without any history of LBP. As a result, marital status, educational level, abdomen muscular power, tenure, category of job, satisfaction of job, working posture, satisfaction for table and chair and lifting materials showed a statistical significance between the case and control groups. 284 Lifting jobs were quantified by NIOSH lifting equation method and ergonomic computer modelling methods. There were no significant differences in the action limit and disc compression force between group with LBP and without LBP. But in the lifting frequency and cumulative disc compression force there were significant differences. Therefore work-related LBP should be prevented by the ergonomic and environmental control.

  • PDF

Analysis of Sloping Ground When Lifting with Force Platform (힘판을 이용한 들기 작업시의 경사면 분석)

  • 서승록;김종석
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.5 no.1
    • /
    • pp.77-86
    • /
    • 2000
  • Even manual materials handling tasks(MMHT) is decreasing by adopt of automatic manufacturing system & transportation supporting machine because of increase of productivity, wage lack of labor, safety, in fact working at inclined & complicated slope such as farm, orchard, harbor loading & unloading, logging place and mining place can't be substituted by machine perfectly. So, workers should do MMHT at this place by themselves, lifting on slope can cause much of hazard, include falling. Keeping balance net to slip can be a reason of low back pain(LBP) by overloaded musculoskeletal system but, there's no enough study about lift on slope. Therefore, In this study, we assessed and analyzed change of center of pressure(COP) when lifting on slope by force platform. The result showed that the length lengthen as increasing angle of slope. Especially, the length extremely increased over 15°. Through These basic result, present proper angle boundary, prevent industrial accidents and give proper data not only lifting but also pushing and pulling on slope someday.

  • PDF